Before anything, I want to say instancing is actually much more simple to do than you may think. In this lesson, we will be rendering a forest using the technique called "Instancing". We will be drawing 400 trees, with 1000 leaves on each tree, giving us a total of 400,000 leaves! Instancing is a fast way to draw many of the same meshes with similar geometry but slight changes, such as positions, color, rotations, animation, etc. This technique can mean the difference between 1 frame per second and 500. We will be drawing the trees using instancing, only chaning the position of the trees. Then we will draw the leaves using instancing, passing in a matrix array to a constant buffer which will give us the position of each leaf on a single tree, and using the instance buffer to move the leaves to their correct trees.
##Introduction## This lesson builds off the last lesson, the third person camera. Here we will learn how to do a technique that you will most definitely want to learn, called instancing. Instancing is a technique to draw multiple copies of the same geometry with slightly different changes per copy, such as position, orientation, color, animation, or scale (even different textures per copy). This technique is VERY fast because it saves the geometry on the GPU, so you do not have to call the draw() function for every copy of the geometry, which will send the geometry to the GPU per draw call. All you have to do is say how many copies of the geometry you want to draw, then call the draw() function only once, to send the geometry to the Shaders, which store the geometry on the GPU while it draws all the copies. In this lesson, we will be drawing 400 trees, with 1000 leaves (quads) per tree. That gives us a total of 400,000 quads to draw! Although you probably won't be drawing trees this way, it is only an example of what instancing can do for you. If you were to make a draw call for every single leaf, that's 400,000 draw calls per frame! Compare that to 1 draw call per frame using the instancing technique, and you'll understand why instancing is so powerfull. Drawing this same scene without instancing will grind your computer to a hault, since you would have to make 400 draw calls for the trees (sending the entire tree's geometry to the GPU 400 times per frame), and 400,000 draw calls for the leaves (sending the leaf's quad geometry to the GPU 400,000 times per frame!). ##Instancing## Instancing is much more simple to do than you may think. All you have to do is tell the GPU how many copies of the geometry you want to draw, and it will draw them all, looping through the graphics pipeline for each instance. The looping through the graphics pipeline per instance is important because it allows you to make the changes per instance that you want. **Instance Data (Instance Buffer/Constant Buffer/On-the-fly (inside shaders))** Along with telling the GPU how many copies to draw, you might also have to provide data for each instance, such as it's position, orientation, color, texture, animation or scale. We can do this a couple different ways, such as using an instance buffer, a constant buffer, computing the instance data directly in the shaders, or a combination of those three. **On-the-fly (inside shaders)** We'll start with the easiest, creating data per instance "on-the-fly". What I mean by on the fly, is the data for each instance is computed directly in the shaders. Since sharing data between each pass through a shader is not possible (such as getting information in the vertex shader from the previous vertex passed through the shader), this leaves only a small range of ways to create unique data for each instance (i'm not talking about using instance or constant buffers at this point, i'm talking about making the actual unique data per instance in the shaders using only what the GPU can provide, because we will talk about using instance and constant buffers next). The GPU can provide you with two things that may be unique between each pass through the vertex shader. They are the instance ID, obtained from using the system value semantic "SV_InstanceID" as input to the shader, which will give you the id of the current instance (this will give you the instance id for the entire copy, not per triangle or vertex), and using a random number function, to get a random number to make each instance different (using a random number in the vertex shader would give you a random number per vertex, so you might not want to do anything with the position using a random number in the vertex shader). Most likely you will want to use more than just the instance id and/or a random number to create uniqueness between each instance, which is why there is an instance buffer and constant buffer, and we will talk about these next. To get the instance ID, we use the SV_InstanceID semantic, which is a system value (notice the "SV_") that the GPU will provide for us, as input to a shader. Here is an example of a vertex shader that uses the SV_InstanceID semantic as input: float4 VS(float4 inPos : POSITION, uint instanceID : SV_InstanceID) { inPos.x += instanceID; // Moves the position of each instance along the positive x axis return inPos; } **Constant Buffer** I choose constant buffers next, because we already know about constant buffers at this point, so that makes them easier to understand than instance buffers (although instance buffers are almost identical to vertex buffers, which make them also easy to understand at this point). Another way to get unique data per instance, is to use a constant buffer. We can provide the GPU with an array of variables, such as an array of matrices (which we do in this lesson). We can send the array to the shaders constant buffer, and use the instance id of the instance to get the associated element in the instance data array stored in the constant buffer. What i mean is we can do something like: position = instancePositions[instanceID]; Where "instancePositions[]" is the array we sent to the constant buffer, and "instanceID" is given to us by the GPU when using the SV_InstanceID semantic as the shaders input. **Instance Buffer** The instance buffer is created the exact same way as a vertex buffer. First we create an instance structure (like we create a vertex structure, which we store as an array inside a vertex buffer), which holds the data per instance, such as the instance's position, color, etc. We will create an array of these instance structure objects, and store them in the instance buffer. To use the instance buffer, we have to update the input layout to take data from the instance buffer. This is exactly similar to the way we set up the input layout to take vertex data from the vertex buffer. Here is an example of an input layout: D3D11_INPUT_ELEMENT_DESC layout[] = { // Data from the vertex buffer { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 20, D3D11_INPUT_PER_VERTEX_DATA, 0}, // Data from the instance buffer { "INSTANCEPOS", 0, DXGI_FORMAT_R32G32B32_FLOAT, 1, 0, D3D11_INPUT_PER_INSTANCE_DATA, 1}, { "INSTANCECOLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 1, 12, D3D11_INPUT_PER_INSTANCE_DATA, 1} }; Notice the differences between the vertex data and the instance data elements. We'll take a look at each parameter that changes specifically between the vertex and instance elements. First notice the semantic names, "INSTANCEPOS" and "INSTANCECOLOR". These are custom semantics. We can name the semantic anything we want as long as there is a corresponding input in the vertex shader. This doesn't change specifically between the vertex and instance data, but i wanted to be clear that it is just a custom semantic name, and is only used to "link" the input element to the corresponding input in the shaders. Next, look at the fourth parameter. This is the input slot. To use an instance buffer, we will be binding it to the input assembler ALONG WITH the vertex buffer. To do this, we create an array of ID3D11Buffer's that hold our vertex and instance buffers. The fourth slot is set to 0 for the vertex data, because we will be using the 0th element in the buffer array we pass to the input assembler for the vertices, and we set 1 for the instance data, which says we will be using the 1st element (which is actually the second... programming lingo...). That means we have to create the buffer array so that the vertex buffer is at "buffers[0]" and the instance buffer is at "buffers[1]". We are allowed to bind up to 16 (0-15) different buffers per input layout. Take a look at the fifth parameter. This is the offset from the beginning of the "buffer" that the element is stored at. As we know, we use separate buffers for the vertex and instance data, so our instance data's position element starts at the beginning of the instance buffer, while the vertex data position element starts at the beginning of the vertex buffer. Next is the "data class" for the element. We have two options here, D3D11_INPUT_PER_VERTEX_DATA and D3D11_INPUT_PER_INSTANCE_DATA. These are pretty self explanatory. D3D11_INPUT_PER_VERTEX_DATA says the element is used "PER VERTEX", so that every vertex passed through the graphics pipeline gets it's own data from the input, while the D3D11_INPUT_PER_INSTANCE_DATA says that the element is used "PER INSTANCE", so that each instance of the geometry passed through the graphics pipeline gets it's own data. When i say it gets its own data, i mean that the input element such as "POSITION" is used PER VERTEX, so that every vertex gets it's own POSITION, while the input element "INSTANCEPOS" is used PER INSTANCE, so that every instance gets it's own "INSTANCEPOS". I hope that's clear enough. Finally, the last parameter. This is the number of instances that need to be rendered BEFORE moving to the next element in the instance buffer. We will take advantage of this parameter when drawing the leaves for our trees. In this lesson, we have a separate input layout just for our leaves, where the only difference is this parameter. For the trees, we will keep this parameter at 1, because we only want to draw a single tree before moving to the next tree's position. Our instance structure contains only a position, which is the position of our tree. We will create 400 trees, so we will need to have an array of 400 instance structures that we store in the instance buffer. We then use "INSTANCEPOS" to get the position of the trees, one tree at a time. Now, for our leaves, we will be using the same instance buffer, because we want the leaves to be on each tree. We set this last parameter to "numLeavesOnTree", which is the number of leaves we want to draw on each tree (1000 in this lesson). What this will do is draw 1000 leaves BEFORE moving to the next INSTANCEPOS defined in the instance buffer, where each position in the instance buffer is a position of a tree. We will draw 1000 leaves on one tree, then move to the next trees position, and draw 1000 more, and do this until we have drawn onto all of the trees. Make a note that this parameter is only used for instance's, and not for vertex data. We set this parameter to 0 for vertex data as you can see above. ##Drawing The Instances## Now all that's left to explain is how to draw instanced geometry. We can draw instanced geometry using one of two methods from the device context, which are DrawInstanced(), and DrawIndexedInstanced(). DrawInstanced() will draw geometry directly from the vertex buffer, while DrawIndexedInstanced() will draw geometry using an index buffer. We will be using an index buffer in this lesson, so we will be calling DrawIndexedInstanced(). DrawIndexedInstanced() takes 5 arguments, which we will explain below: void DrawIndexedInstanced( [in] UINT IndexCountPerInstance, [in] UINT InstanceCount, [in] UINT StartIndexLocation, [in] INT BaseVertexLocation, [in] UINT StartInstanceLocation ); IndexCountPerInstance is the number of indices to draw for each instance. Same as when we used DrawIndexed() InstanceCount is the number of instances we want to draw. In this lesson, we will be drawing numLeavesPerTree * numTrees. StartIndexLocation is the offset in the index buffer to start drawing from. BaseVertexLocation is a value added to each index when reading from the vertex buffer. You might have a big vertex buffer with multiple objects in it, and then have separate index buffers for each object. You will want to set this as the position in the vertex buffer of the first vertex used for this current object. An example is you have two quads stored in a vertex buffer, giving you 8 vertices in the vertex buffer. Quad1 uses vertices 0-3, while quad2 uses vertices 4-7. Maybe you have a single index buffer, which uses vertices 0-3. We want to draw Quad2 using this index buffer, so we will set this parameter to 4, so we add 4 to each index value, which draws vertices 4-7 from the vertex buffer. StartInstanceLocation is a value added to each index per instance. This means that you can actually use different geometry for each instance (although the entire vertex buffer is still passed). I want to say one last thing that I noticed in the msdn documentation on the DrawIndexedInstanced() function. They say: "Indexing requires multiple vertex buffers: at least one for per-vertex data and a second buffer for per-instance data." But... haha, that's not exactly right. They say it "requires" multiple buffers, but you can do it with a single vertex buffer, and just use the constant buffer for instance data. In fact, There are times that using the constant buffer is FASTER than using an instance buffer (of course that depends on what your doing). Take a look at this lessons code, you will see we store 1000 matrices in a constant buffer that is only updated once per scene. This way, the matrices are stored on the GPU throughout the scene. We COULD put the matrices into an instance buffer, and send that instance buffer along with the leaf's vertex buffer every time we draw the leaves, but that would lead to pointless data transfer every single frame (sending 1000 matrices to the GPU every frame vs. sending 1000 matrices to the GPU only once per scene). In this lesson, we are still sending an instance buffer along with the vertex buffer for the leaves, because we want to move the leaves to the tree positions. We don't have to do it this way though, we could just send the tree positions as an array to the same constant buffer that is only updated once per scene, and not bind an instance buffer at all when drawing the leaves (or trees). Instance buffers are an important part of instancing though, so I wanted to make sure that we are using one in this lesson. ##cbPerObject Constant Buffer## Alright, let's start at the top. First new thing is a couple boolean variables in our cbPerObject. These are used so we can use a single vertex buffer. Usually you will want to have separate vertex buffers for instanced object, but in this lesson we'll keep it simple by using only a single vertex buffer. You will see how these two new variables are used when we get to the effects file. struct cbPerObject { XMMATRIX WVP; XMMATRIX World; //These will be used for the pixel shader XMFLOAT4 difColor; BOOL hasTexture; //Because of HLSL structure packing, we will use windows BOOL //instead of bool because HLSL packs things into 4 bytes, and //bool is only one byte, where BOOL is 4 bytes BOOL hasNormMap; /************************************New Stuff****************************************************/ // Usually you will want to create a separate vertex shader for instanced geometry, however // to keep things simple, i use the same vertex shader we have been using, but instead only // apply the instance calculations if isInstance is set to true, and the leaf calculations // if both isInstance and isLeaf are set to true BOOL isInstance; BOOL isLeaf; /*************************************************************************************************/ }; ##Some Globals## Here we have a couple goodies! First, we have the number of trees we want to draw in our scene and the number of leaves per tree. On my computer, the lesson runs at about 30 fps, but if you have a slower machine, you might want to take these numbers down a notch. We'll learn how to do frustum culling on the CPU and scene management in a later lesson, so we can still have this many trees and leaves in the scene, but cut down the numbers sent to the GPU, which will speed things up excellently! Next we create a new constant buffer structure. Remember it is good practice to separate constant buffers depending on how often they are updated. This new constant buffer will only be updated once per scene, because the leaves will not move in this lesson, so it would be pointless to be sending 1000 matrices to the GPU every frame, when we can send it once at the scene initialization, where it will be stored on the GPU throughout the scene. The leafOnTree matrix is the position, scale, and rotation of a leaf in "tree space", which just means that after we apply this transformation matrix to the leaf, we will "add" the trees position to the leafs position. We will be creating a new input layout for this lesson, which will be used for the leaves, called "leafVertLayout". We'll talk about this new layout when we get to it. We will be creating an "instance buffer" for this lesson, which is very similar to how we create and use a vertex buffer. I've explained the instance buffer above, so i hope i don't have to go through it all again here ;) Finally we come to the leaf and tree model stuff. We've covered all this in earlier lessons, but as you can see, the leaf is only a single quad with a texture of a leave on it. The tree is an obj model we load in, so we need the variables and stuff we used when loading an obj model from the obj model loading lesson. const int numLeavesPerTree = 1000; const int numTrees = 400; struct cbPerScene { XMMATRIX leafOnTree[numLeavesPerTree]; }; cbPerScene cbPerInst; ID3D11Buffer* cbPerInstanceBuffer; ID3D11InputLayout* leafVertLayout; struct InstanceData { XMFLOAT3 pos; }; // leaf data (leaves are drawn as quads) ID3D11ShaderResourceView* leafTexture; ID3D11Buffer *quadVertBuffer; ID3D11Buffer *quadIndexBuffer; // Tree data (loaded from an obj file) ID3D11Buffer* treeInstanceBuff; ID3D11Buffer* treeVertBuff; ID3D11Buffer* treeIndexBuff; int treeSubsets = 0; std::vector<int> treeSubsetIndexStart; std::vector<int> treeSubsetTexture; XMMATRIX treeWorld; ##Updated Input Layout## An input layout, as we learned from one of the earliest lessons, describes the data we are going to be sending to the Input Assembler. Before we were only sending information PER VERTEX, such as the vertex position, tex coord, normal, etc. Now however, we are now going to send data per vertex AND PER INSTANCE. We are only storing the position of each tree in the instance buffer, so that is all we have to tell the input assembler we are sending for the instance data. D3D11_INPUT_ELEMENT_DESC layout[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 20, D3D11_INPUT_PER_VERTEX_DATA, 0}, { "TANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 32, D3D11_INPUT_PER_VERTEX_DATA, 0}, /************************************New Stuff****************************************************/ // Instance elements // last parameter (InstanceDataStepRate) is one because we will "step" to the next instance element (INSTANCEPOS) after drawing 1 instance (tree) { "INSTANCEPOS", 0, DXGI_FORMAT_R32G32B32_FLOAT, 1, 0, D3D11_INPUT_PER_INSTANCE_DATA, 1} /*************************************************************************************************/ }; ##Leaf Input Layout## This is the new input layout for the leaf we will be drawing. It is almost identical to the input layout we have above, the difference though, is the last parameter of the "INSTANCEPOS" element. We set this last parameter to "numLeavesPerTree". We will be using the exact same instance buffer as we do for the trees. The instance buffer stores all the tree positions, and we will need to move the leaves to the tree positions. We set the last parameter of this element to "numLeavesPerTree" because we want to draw all 1000 leaves for a tree, before moving to the next tree position ("INSTANCEPOS"). D3D11_INPUT_ELEMENT_DESC leafLayout[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 20, D3D11_INPUT_PER_VERTEX_DATA, 0}, { "TANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 32, D3D11_INPUT_PER_VERTEX_DATA, 0}, // Instance elements // last parameter (InstanceDataStepRate) is set to the number of leaves per tree. InstanceDataStepRate is the number // of instances to draw before moving on to the next element in the instance buffer, in this case, the next tree position. // We want to make sure that ALL the leaves are drawn for the current tree before moving to the next trees position { "INSTANCEPOS", 0, DXGI_FORMAT_R32G32B32_FLOAT, 1, 0, D3D11_INPUT_PER_INSTANCE_DATA, numLeavesPerTree} }; UINT numLeafElements = ARRAYSIZE(leafLayout); ##Loading the Tree Object Model and Computing Tree Positions## Luckily, we've already covered loading .obj models in a previous lesson, so we don't have to go through all that. We'll start with what's new for this lesson, which is creating the tree positions. In this lesson, we have 400 trees. We make a loop that loops 400 times, and gives the trees a random position between (-100, 0, -100) and (100, 0, 100). We then store that position in an InstanceData array called inst. // Load in our tree model if(!LoadObjModel(L"tree.obj", &treeVertBuff, &treeIndexBuff, treeSubsetIndexStart, treeSubsetTexture, material, treeSubsets, true, true)) return false; // Set up the tree positions then instance buffer std::vector<InstanceData> inst(numTrees); XMVECTOR tempPos; srand(100); // We are just creating random positions for the trees, between the positions of (-100, 0, -100) to (100, 0, 100) // then storing the position in our instanceData array for(int i = 0; i < numTrees; i++) { float randX = ((float)(rand() % 2000) / 10) - 100; float randZ = ((float)(rand() % 2000) / 10) - 100; tempPos = XMVectorSet(randX, 0.0f, randZ, 0.0f); XMStoreFloat3(&inst[i].pos, tempPos); } ##Creating the Instance Buffer## Now we'll create the instance buffer, which will hold our array of InstanceData objects. What's nice about this, is it's exactly the same as creating a vertex buffer, but instead of storing a Vertex array, we are going to store an InstanceData array. That's the only difference here. The last thing we do with the tree initialization, is create it's world matrix. We will keep this as an identity matrix, meaning it does not change the trees in any way, and they will start at the point (0,0,0) in world space BEFORE they get translated to their positions that are defined in the instance buffer. // Create our trees instance buffer // Pretty much the same thing as a regular vertex buffer, except that this buffers data // will be used per "instance" instead of per "vertex". Each instance of the geometry // gets it's own instanceData data, similar to how each vertex of the geometry gets its own // Vertex data D3D11_BUFFER_DESC instBuffDesc; ZeroMemory( &instBuffDesc, sizeof(instBuffDesc) ); instBuffDesc.Usage = D3D11_USAGE_DEFAULT; instBuffDesc.ByteWidth = sizeof( InstanceData ) * numTrees; instBuffDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; instBuffDesc.CPUAccessFlags = 0; instBuffDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA instData; ZeroMemory( &instData, sizeof(instData) ); instData.pSysMem = &inst[0]; hr = d3d11Device->CreateBuffer( &instBuffDesc, &instData, &treeInstanceBuff); // The tree's world matrix (We will keep it an identity matrix, but we could change their positions without // unrealistic effects, since remember that all transformations are done around the point (0,0,0), and we will // be applying this world matrix to our trees AFTER they have been individually positioned depending on the // instance buffer, which means they will not be centered at the point (0,0,0)) treeWorld = XMMatrixIdentity(); ##Creating the Leaf## In this lesson, we are going to be drawing the leaf onto a quad. We already know how to create a quad and make a texture from previous lessons, so you should be able to see what this is all about. // Create Leaf geometry (quad) Vertex v[] = { // Front Face Vertex(-1.0f, -1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex(-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex( 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex( 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f), }; DWORD indices[] = { // Front Face 0, 1, 2, 0, 2, 3, }; D3D11_BUFFER_DESC indexBufferDesc; ZeroMemory( &indexBufferDesc, sizeof(indexBufferDesc) ); indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(DWORD) * 2 * 3; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = indices; d3d11Device->CreateBuffer(&indexBufferDesc, &iinitData, &quadIndexBuffer); D3D11_BUFFER_DESC vertexBufferDesc; ZeroMemory( &vertexBufferDesc, sizeof(vertexBufferDesc) ); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.ByteWidth = sizeof( Vertex ) * 4; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; ZeroMemory( &vertexBufferData, sizeof(vertexBufferData) ); vertexBufferData.pSysMem = v; hr = d3d11Device->CreateBuffer( &vertexBufferDesc, &vertexBufferData, &quadVertBuffer); // Now we load in the leaf texture hr = D3DX11CreateShaderResourceViewFromFile( d3d11Device, L"leaf.png", NULL, NULL, &leafTexture, NULL ); ##Creating the Leaf "Tree Space" Matrix Array## I know i've already talked about what I mean when I say "Tree Space", but i'll do it again just to make sure your clear about how we do what we're doing in this lesson. When the leaves are first sent to the graphics pipeline (vertex shader, etc.), they will be positioned at the point (0,0,0) in world space. We will then transform the leaves using this matrix array (specifically using the matrix in the array that corresponds to the current leaf). After they have been transformed, we will add the tree's position to the leafs position (The current tree we are rendering the leaves for). Finally, we will apply the tree's world matrix (only because it's already an identity matrix), which won't do anything at all to the leaf, because it's an identity matrix. So when I say "tree space" matrix, we are creating the matrix that transform's the leaf RELATIVE to the tree's position. It's actually very simple, and if you already completely understood this idea, but after reading this you are confused, i'm really sorry ;) Now, to create the leafs tree space matrix, We will rotate the leaf, translate the leaf along the x axis, then rotate the leaf again. This will make the leaf "spin" around it's own center, then by moving the leaf along the x axis (the distance we want from the center of the tree) and rotating again, we will now be "orbiting" the leaf around the center of the tree. Because there is less space at the center of the leaf mass, than there is on the outer edge of the leaf mass, you will see that the leaves "bunch up" at the center. We don't want this, and instead would rather the edge of the mass to be more dense. when you look at how we are using the rand() function, you will see we first get a random number between 0 and 999. We then divide this by 250.0f which will give us a float value between 0 and 4. We want a distance of 4 to be the max because that is about how far the tree's branches extend from the center of the tree. We subtract this number from 6, so that now the distance is between 2 and 6. Now there is not really a bunch at the center of the mass (and in fact, there are no leaves at all for the first two unit radius space at the center of the mass ;). However, the leaf mass radius is 2 units too far from the tips of the branches, and if you rendered it like this, you will also see that the edge of the leaf mass is still very "weak", and the leaves are too spaced out, and the leaves are more bunched at the center of the mass still. So, we check to see if the distance for a leaf is greater than 4, and if it is, we set it at 4. Now, all the leaves that were further than 4 units from the tree, are now exactly 4 units from the tree, which will give us a higher density at the edge of our leaf mass, which is exactly what we wanted! Now we apply the rotation to the leaf, which will give us the effect of a spherical mass of leaves! We are not quite done yet though, because as it is at this point, we have a sphere of leaves. We want more of a half circle of leaves, so all we do is check if a leaf is below 0 (or close to it (1.0f)) on the y axis, and if it is, we just negate the y axis, so the leaf gets moved up into the half sphere mass of leaves. Now we create the new position from the distance from the tree and the rotation applied to that distance vector. And then we apply all the transformations on a temporary matrix. Lastly, we store that temporary matrix into our constant buffer structure array that gets updated a single time per scene (cbPerScene). // Here we create the leaf world matrices, that will be the leafs // position and orientation on the tree each individual tree. We will create an array of matrices // for the leaves that we will send to the shaders in the cbPerInstance constant buffer // This matrix array is used "per tree", so that each tree gets the exact same number of leaves, // with the same orientation, position, and scale as all of the other trees // Start by initializing the matrix array srand(100); XMFLOAT3 fTPos; XMMATRIX rotationMatrix; XMMATRIX tempMatrix; for(int i = 0; i < numLeavesPerTree; i++) { float rotX =(rand() % 2000) / 500.0f; // Value between 0 and 4 PI (two circles, makes it slightly more mixed) float rotY = (rand() % 2000) / 500.0f; float rotZ = (rand() % 2000) / 500.0f; // the rand() function is slightly more biased towards lower numbers, which would make the center of // the leaf "mass" be more dense with leaves than the outside of the "sphere" of leaves we are making. // We want the outside of the "sphere" of leaves to be more dense than the inside, so the way we do this // is getting a distance value between 0 and 4, we then subtract that value from 6, so that the very center // does not have any leaves. then below you can see we are checking to see if the distance is greater than 4 // (because the tree branches are approximately 4 units radius from the center of the tree). If the distance // is greater than 4, then we set it at 4, which will make the edge of the "sphere" of leaves more densly // populated than the center of the leaf mass float distFromCenter = 6.0f - ((rand() % 1000) / 250.0f); if(distFromCenter > 4.0f) distFromCenter = 4.0f; // Now we create a vector with the length of distFromCenter, by simply setting it's x component as distFromCenter. // We will now rotate the vector, which will give us the "sphere" of leaves after we have rotated all the leaves. // We do not want a perfect sphere, more like a half sphere to cover the branches, so we check to see if the y // value is less than -1.0f (giving us slightly more than half a sphere), and if it is, negate it so it is reflected // across the xz plane tempPos = XMVectorSet(distFromCenter, 0.0f, 0.0f, 0.0f); rotationMatrix = XMMatrixRotationRollPitchYaw(rotX, rotY, rotZ); tempPos = XMVector3TransformCoord(tempPos, rotationMatrix ); if(XMVectorGetY(tempPos) < -1.0f) tempPos = XMVectorSetY(tempPos, -XMVectorGetY(tempPos)); // Now we create our leaves "tree" matrix (this is not the leaves "world matrix", because we are not // defining the leaves position, orientation, and scale in world space, but instead in "tree" space XMStoreFloat3(&fTPos, tempPos); Scale = XMMatrixScaling( 0.25f, 0.25f, 0.25f ); Translation = XMMatrixTranslation(fTPos.x, fTPos.y + 8.0f, fTPos.z ); tempMatrix = Scale * rotationMatrix * Translation; // To make things simple, we just store the matrix directly into our cbPerInst structure cbPerInst.leafOnTree[i] = XMMatrixTranspose(tempMatrix); } ##Creating the Leaf Input Layout## Here we create our leaf's input layout, which we will bind to the IA (Input Assembler) before we draw our leaf. hr = d3d11Device->CreateInputLayout( leafLayout, numLeafElements, VS_Buffer->GetBufferPointer(), VS_Buffer->GetBufferSize(), &leafVertLayout ); ##Creating the Constant Buffer (cbPerScene)## We already know how to create constant buffers, so there's not much to say here //Create the buffer to send to the cbuffer per instance in effect file ZeroMemory(&cbbd, sizeof(D3D11_BUFFER_DESC)); cbbd.Usage = D3D11_USAGE_DEFAULT; // We have already defined how many elements are in our leaf matrix array inside the cbPerScene structure, // so we only need the size of the entire structure here, because the number of leaves per tree will not // change throughout the scene. cbbd.ByteWidth = sizeof(cbPerScene); cbbd.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbbd.CPUAccessFlags = 0; cbbd.MiscFlags = 0; hr = d3d11Device->CreateBuffer(&cbbd, NULL, &cbPerInstanceBuffer); ##Updating cbPerScene## This constant buffer is only updated a single time per scene, so we can do this update while initializing the scene. The data we update the constant buffer with will stay on the GPU until we are through with the scene. We do this so that we do not update the buffer every time we draw our leaves, since our leaves are not going to change positions. However, if you wanted to animate the leaves or whatever, you will have to update this buffer (or another buffer with the animation matrix) more than once per scene, and most likely every frame. d3d11DevCon->UpdateSubresource( cbPerInstanceBuffer, 0, NULL, &cbPerInst, 0, 0); ##Drawing the Leaves## We have already explained most of the new stuff here that applies to instancing in the above overview, so i won't spend a lot of time here. All we are doing here, is drawing a quad and texturing it with the leaf texture. We can supply the shaders with both the vertex and instance buffers in one of two ways. The first way, which we do here, is create an array of buffers that store the vertex in the 0th (vertInstBuffers[0]) element, and the instance in the 1st element (vertInstBuffers[1]), and just pass this array of buffers to the function (IASetVertexBuffers) that binds the buffers to the IA. The second approach, is to bind the buffers separately, by calling IASetVertexBuffers twice, one for each buffer. If you do it this way, you will have to make sure they are bound to separate "slots" (first parameter of IASetVertexBuffers()). bind the vertex buffer to slot 0, and the instance buffer to slot 1. We set the input layout to the leaf's input layout before drawing the leaf, and set it back to the default input layout after calling the draw function. We want to see both sides of the leaf, so we turn off backface culling. To draw the leaf, we call DrawIndexedInstanced() and tell it we want "numLeavesPerTree * numTrees" instances. ///***Draw INSTANCED Leaf Models***/// // We are now binding two buffers to the input assembler, one for the vertex data, // and one for the instance data, so we will have to create a strides array, offsets array // and buffer array. UINT strides[2] = {sizeof( Vertex ), sizeof( InstanceData )}; UINT offsets[2] = {0, 0}; // Store the vertex and instance buffers into an array // The leaves will use the same instance buffer as the trees, because we need each leaf // to go to a certain tree ID3D11Buffer* vertInstBuffers[2] = {quadVertBuffer, treeInstanceBuff}; // Set the leaf input layout. This is where we will set our special input layout for our leaves d3d11DevCon->IASetInputLayout( leafVertLayout ); //Set the models index buffer (same as before) d3d11DevCon->IASetIndexBuffer(quadIndexBuffer, DXGI_FORMAT_R32_UINT, 0); //Set the models vertex and isntance buffer using the arrays created above d3d11DevCon->IASetVertexBuffers( 0, 2, vertInstBuffers, strides, offsets ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = treeWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(treeWorld); cbPerObj.hasTexture = true; // We'll assume all md5 subsets have textures cbPerObj.hasNormMap = false; // We'll also assume md5 models have no normal map (easy to change later though) cbPerObj.isInstance = true; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = true; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); // We are sending two constant buffers to the vertex shader now, wo we will create an array of them ID3D11Buffer* vsConstBuffers[2] = {cbPerObjectBuffer, cbPerInstanceBuffer}; d3d11DevCon->VSSetConstantBuffers( 0, 2, vsConstBuffers ); d3d11DevCon->PSSetConstantBuffers( 1, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetShaderResources( 0, 1, &leafTexture ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(RSCullNone); d3d11DevCon->DrawIndexedInstanced( 6, numLeavesPerTree * numTrees, 0, 0, 0 ); // Reset the default Input Layout d3d11DevCon->IASetInputLayout( vertLayout ); ##Drawing the Tree## Now we draw our tree model, loaded in from an obj file. If you don't remember how to draw the obj model loaded in, you can go back to the lesson on loading obj models. The only difference here when drawing the tree from drawing a regular obj model, is that this tree will be instanced, so we bind two buffers to the IA (vertex and instance buffers), and call DrawIndexedInstanced() instead of DrawIndexed(). /////Draw our tree instances///// for(int i = 0; i < treeSubsets; ++i) { // Store the vertex and instance buffers into an array ID3D11Buffer* vertInstBuffers[2] = {treeVertBuff, treeInstanceBuff}; //Set the models index buffer (same as before) d3d11DevCon->IASetIndexBuffer(treeIndexBuff, DXGI_FORMAT_R32_UINT, 0); //Set the models vertex buffer d3d11DevCon->IASetVertexBuffers( 0, 2, vertInstBuffers, strides, offsets ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = treeWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(treeWorld); cbPerObj.difColor = material[treeSubsetTexture[i]].difColor; cbPerObj.hasTexture = material[treeSubsetTexture[i]].hasTexture; cbPerObj.hasNormMap = material[treeSubsetTexture[i]].hasNormMap; cbPerObj.isInstance = true; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = false; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetConstantBuffers( 1, 1, &cbPerObjectBuffer ); if(material[treeSubsetTexture[i]].hasTexture) d3d11DevCon->PSSetShaderResources( 0, 1, &meshSRV[material[treeSubsetTexture[i]].texArrayIndex] ); if(material[treeSubsetTexture[i]].hasNormMap) d3d11DevCon->PSSetShaderResources( 1, 1, &meshSRV[material[treeSubsetTexture[i]].normMapTexArrayIndex] ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(RSCullNone); int indexStart = treeSubsetIndexStart[i]; int indexDrawAmount = treeSubsetIndexStart[i+1] - treeSubsetIndexStart[i]; if(!material[meshSubsetTexture[i]].transparent) d3d11DevCon->DrawIndexedInstanced( indexDrawAmount, numTrees, indexStart, 0, 0 ); } ##Effects File## We start our Effects file off by declaring a constant. This constant will be used for two things. The first is to initialize the leaf matrix in the cbPerScene buffer with the number of leaves per tree, and the second is to find which tree we are currently drawing leaves for. #define NUM_LEAVES_PER_TREE 1000 This is the updated cbPerObject buffer. We now have two more boolean variables, which are used in the vertex shader to decide whether we need to do instance work on the vertices or not. cbuffer cbPerObject { float4x4 WVP; float4x4 World; float4 difColor; bool hasTexture; bool hasNormMap; bool isInstance; bool isLeaf; }; Our new cbPerScene buffer. This buffer holds an array of float4x4's (matrices). We initialize this array with the number of leaves per tree we defined at the top of the effects file. It is not possible to create dynamic arrays in the shader file, so the way around this is to make sure you initialize the array with the maximum number of elements you will use. On current directx 10/11 compatible devices, the limit for a float4 is 4096. We are using a float4x4, so the maximum limit is 1024. cbuffer cbPerScene { float4x4 leafOnTree[NUM_LEAVES_PER_TREE]; }; Here is our Vertex Shader. We have added two new inputs to the vertex shader. The first is a custom input (INSTANCEPOS), while the other is a system value (SV_InstanceID). A system value is an input that the GPU will provide you with. You can look online for all the system value semantics. We are using SV_InstanceID so we can find the current tree we should be drawing the leaf instance for, then using that current tree id to find the current leaf in the tree we are drawing (leaf 0 to 999), so we can get the leafs matrix from the matrix array stored in cbPerScene. We transform the leaf using the leaf matrix from the matrix array, which will be it's position, orientation, and scale in the tree, then we add the current tree's position, taken from instancePos, which is the position vector stored in our instance buffer. VS_OUTPUT VS(float4 inPos : POSITION, float2 inTexCoord : TEXCOORD, float3 normal : NORMAL, float3 tangent : TANGENT, float3 instancePos : INSTANCEPOS, uint instanceID : SV_InstanceID) { VS_OUTPUT output; if(isInstance) { // get leaves position on tree, then add trees position if(isLeaf) { // We have 1000 leaves per tree, so we can find the current leaf (in the tree) we are on (so we can get it's matrix from the matrix array stored in cbPerScene) // by first getting the current tree (instanceID / NUM_LEAVES_PER_TREE). We can then find the current leaf in the tree we are on by multiplying the current tree id // with the number of leaves per tree, then subtracting that total from the current instance id. uint currTree = (instanceID / NUM_LEAVES_PER_TREE); uint currLeafInTree = instanceID - (currTree * NUM_LEAVES_PER_TREE); inPos = mul(inPos, leafOnTree[currLeafInTree]); } // set position using instance data inPos += float4(instancePos, 0.0f); } output.Pos = mul(inPos, WVP); output.worldPos = mul(inPos, World); output.normal = mul(normal, World); output.tangent = mul(tangent, World); output.TexCoord = inTexCoord; return output; } That's all there is to it! Let me know if you find any mistakes in my explanations, or things I REALLY should have done differently in the code (I know there are many things i should do differently, but most of them are besides the point of the lesson ;) ##Exercise:## 1. Try animating the leaves, such as rotating them, or even having some of them kinda fall down from the trees! 2. Just play with the whole instance idea, and post on the forum with any cool demos you might come up with! Here's the final code: main.cpp //Include and link appropriate libraries and headers// #pragma comment(lib, "d3d11.lib") #pragma comment(lib, "d3dx11.lib") #pragma comment(lib, "d3dx10.lib") #pragma comment (lib, "D3D10_1.lib") #pragma comment (lib, "DXGI.lib") #pragma comment (lib, "D2D1.lib") #pragma comment (lib, "dwrite.lib") #pragma comment (lib, "dinput8.lib") #pragma comment (lib, "dxguid.lib") #include <windows.h> #include <d3d11.h> #include <d3dx11.h> #include <d3dx10.h> #include <xnamath.h> #include <D3D10_1.h> #include <DXGI.h> #include <D2D1.h> #include <sstream> #include <dwrite.h> #include <dinput.h> #include <vector> #include <fstream> #include <istream> //Global Declarations - Interfaces// IDXGISwapChain* SwapChain; ID3D11Device* d3d11Device; ID3D11DeviceContext* d3d11DevCon; ID3D11RenderTargetView* renderTargetView; ID3D11DepthStencilView* depthStencilView; ID3D11Texture2D* depthStencilBuffer; ID3D11VertexShader* VS; ID3D11PixelShader* PS; ID3D11PixelShader* D2D_PS; ID3D10Blob* D2D_PS_Buffer; ID3D10Blob* VS_Buffer; ID3D10Blob* PS_Buffer; ID3D11InputLayout* vertLayout; ID3D11Buffer* cbPerObjectBuffer; ID3D11BlendState* d2dTransparency; ID3D11RasterizerState* CCWcullMode; ID3D11RasterizerState* CWcullMode; ID3D11SamplerState* CubesTexSamplerState; ID3D11Buffer* cbPerFrameBuffer; ID3D10Device1 *d3d101Device; IDXGIKeyedMutex *keyedMutex11; IDXGIKeyedMutex *keyedMutex10; ID2D1RenderTarget *D2DRenderTarget; ID2D1SolidColorBrush *Brush; ID3D11Texture2D *BackBuffer11; ID3D11Texture2D *sharedTex11; ID3D11Buffer *d2dVertBuffer; ID3D11Buffer *d2dIndexBuffer; ID3D11ShaderResourceView *d2dTexture; IDWriteFactory *DWriteFactory; IDWriteTextFormat *TextFormat; IDirectInputDevice8* DIKeyboard; IDirectInputDevice8* DIMouse; ID3D11Buffer* sphereIndexBuffer; ID3D11Buffer* sphereVertBuffer; ID3D11VertexShader* SKYMAP_VS; ID3D11PixelShader* SKYMAP_PS; ID3D10Blob* SKYMAP_VS_Buffer; ID3D10Blob* SKYMAP_PS_Buffer; ID3D11ShaderResourceView* smrv; ID3D11DepthStencilState* DSLessEqual; ID3D11RasterizerState* RSCullNone; ID3D11BlendState* Transparency; ID3D11BlendState* leafTransparency; //Mesh variables. Each loaded mesh will need its own set of these ID3D11Buffer* meshVertBuff; ID3D11Buffer* meshIndexBuff; XMMATRIX meshWorld; int meshSubsets = 0; std::vector<int> meshSubsetIndexStart; std::vector<int> meshSubsetTexture; //Textures and material variables, used for all mesh's loaded std::vector<ID3D11ShaderResourceView*> meshSRV; std::vector<std::wstring> textureNameArray; std::wstring printText; //Global Declarations - Others// LPCTSTR WndClassName = L"firstwindow"; HWND hwnd = NULL; HRESULT hr; int Width = 800; int Height = 600; DIMOUSESTATE mouseLastState; LPDIRECTINPUT8 DirectInput; float rotx = 0; float rotz = 0; float scaleX = 1.0f; float scaleY = 1.0f; XMMATRIX Rotationx; XMMATRIX Rotationz; XMMATRIX Rotationy; XMMATRIX WVP; XMMATRIX camView; XMMATRIX camProjection; XMMATRIX d2dWorld; XMVECTOR camPosition; XMVECTOR camTarget; XMVECTOR camUp; XMVECTOR DefaultForward = XMVectorSet(0.0f,0.0f,1.0f, 0.0f); XMVECTOR DefaultRight = XMVectorSet(1.0f,0.0f,0.0f, 0.0f); XMVECTOR camForward = XMVectorSet(0.0f,0.0f,1.0f, 0.0f); XMVECTOR camRight = XMVectorSet(1.0f,0.0f,0.0f, 0.0f); XMVECTOR currCharDirection = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); XMVECTOR oldCharDirection = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); XMVECTOR charPosition = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); // Setting this global in case it can be used somewhere else in the app float charCamDist = 15.0f; // This is the distance between the camera and the character XMMATRIX camRotationMatrix; float moveLeftRight = 0.0f; float moveBackForward = 0.0f; float camYaw = 0.0f; float camPitch = 0.0f; int NumSphereVertices; int NumSphereFaces; XMMATRIX sphereWorld; XMMATRIX Rotation; XMMATRIX Scale; XMMATRIX Translation; float rot = 0.01f; double countsPerSecond = 0.0; __int64 CounterStart = 0; int frameCount = 0; int fps = 0; __int64 frameTimeOld = 0; double frameTime; //Function Prototypes// bool InitializeDirect3d11App(HINSTANCE hInstance); void CleanUp(); bool InitScene(); void DrawScene(); bool InitD2D_D3D101_DWrite(IDXGIAdapter1 *Adapter); void InitD2DScreenTexture(); void UpdateScene(double time); void UpdateCamera(); void RenderText(std::wstring text, int inInt); void StartTimer(); double GetTime(); double GetFrameTime(); bool InitializeWindow(HINSTANCE hInstance, int ShowWnd, int width, int height, bool windowed); int messageloop(); bool InitDirectInput(HINSTANCE hInstance); void DetectInput(double time); void CreateSphere(int LatLines, int LongLines); LRESULT CALLBACK WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam); //Create effects constant buffer's structure// struct cbPerObject { XMMATRIX WVP; XMMATRIX World; //These will be used for the pixel shader XMFLOAT4 difColor; BOOL hasTexture; //Because of HLSL structure packing, we will use windows BOOL //instead of bool because HLSL packs things into 4 bytes, and //bool is only one byte, where BOOL is 4 bytes BOOL hasNormMap; /************************************New Stuff****************************************************/ // Usually you will want to create a separate vertex shader for instanced geometry, however // to keep things simple, i use the same vertex shader we have been using, but instead only // apply the instance calculations if isInstance is set to true, and the leaf calculations // if both isInstance and isLeaf are set to true BOOL isInstance; BOOL isLeaf; /*************************************************************************************************/ }; cbPerObject cbPerObj; /************************************New Stuff****************************************************/ const int numLeavesPerTree = 1000; const int numTrees = 400; // This constant buffer is updated per scene. We will not be chaning the position of our leaves throughout // the scene, so we only need to send this to the gpu once, instead of every frame struct cbPerScene { // Each tree gets 1000 leaves (numLeavesPerTree), so we create a matrix array of 1000 matrices that // store the leaves position, orientation, and scale relative to the tree positions. All trees will // have the same number of leaves, with the same position, orientation, and scale of each leaf. XMMATRIX leafOnTree[numLeavesPerTree]; }; cbPerScene cbPerInst; ID3D11Buffer* cbPerInstanceBuffer; ID3D11InputLayout* leafVertLayout; // This is the data structure we will store in our instance buffer. It's very similar to the idea of // the vertex structure, where we create a layout for the vertex structure, we also need to create // the layout for the instance buffer (they are created together as a single layout). We will only // store the position of our trees in this instance structure, but this is where you would add // other things like color, rotations, matrices, whatever struct InstanceData { XMFLOAT3 pos; }; // leaf data (leaves are drawn as quads) ID3D11ShaderResourceView* leafTexture; ID3D11Buffer *quadVertBuffer; ID3D11Buffer *quadIndexBuffer; // Tree data (loaded from an obj file) ID3D11Buffer* treeInstanceBuff; ID3D11Buffer* treeVertBuff; ID3D11Buffer* treeIndexBuff; int treeSubsets = 0; std::vector<int> treeSubsetIndexStart; std::vector<int> treeSubsetTexture; XMMATRIX treeWorld; // Our trees are instanced and their positions will be calculated in the // vertex shader. This world matrix will define their starting (base) position // orientation, and scale AFTER they are moved to their individual positions // in the vertex buffer. So if you were to rotate the trees using this world matrix // The effect would not be that they rotate on their own axis, but instead rotate (orbit) // around the worlds origin (0,0,0) from their individual positions defined in the instance buffer // Same goes for scaling, they will appear stretched if you were to do scaling with this world matrix // However, we can use this world matrix to change the position of all the trees (translation). We // keep it an identity matrix though, so that the entire group of trees are centered around the world origin /*************************************************************************************************/ //Create material structure struct SurfaceMaterial { std::wstring matName; XMFLOAT4 difColor; int texArrayIndex; int normMapTexArrayIndex; bool hasNormMap; bool hasTexture; bool transparent; }; std::vector<SurfaceMaterial> material; //Define LoadObjModel function after we create surfaceMaterial structure bool LoadObjModel(std::wstring filename, //.obj filename ID3D11Buffer** vertBuff, //mesh vertex buffer ID3D11Buffer** indexBuff, //mesh index buffer std::vector<int>& subsetIndexStart, //start index of each subset std::vector<int>& subsetMaterialArray, //index value of material for each subset std::vector<SurfaceMaterial>& material, //vector of material structures int& subsetCount, //Number of subsets in mesh bool isRHCoordSys, //true if model was created in right hand coord system bool computeNormals); //true to compute the normals, false to use the files normals struct Light { Light() { ZeroMemory(this, sizeof(Light)); } XMFLOAT3 pos; float range; XMFLOAT3 dir; float cone; XMFLOAT3 att; float pad2; XMFLOAT4 ambient; XMFLOAT4 diffuse; }; Light light; struct cbPerFrame { Light light; }; cbPerFrame constbuffPerFrame; struct Vertex //Overloaded Vertex Structure { Vertex(){} Vertex(float x, float y, float z, float u, float v, float nx, float ny, float nz, float tx, float ty, float tz) : pos(x,y,z), texCoord(u, v), normal(nx, ny, nz), tangent(tx, ty, tz){} XMFLOAT3 pos; XMFLOAT2 texCoord; XMFLOAT3 normal; XMFLOAT3 tangent; XMFLOAT3 biTangent; // Will not be sent to shader int StartWeight; int WeightCount; }; D3D11_INPUT_ELEMENT_DESC layout[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 20, D3D11_INPUT_PER_VERTEX_DATA, 0}, { "TANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 32, D3D11_INPUT_PER_VERTEX_DATA, 0}, /************************************New Stuff****************************************************/ // Instance elements // last parameter (InstanceDataStepRate) is one because we will "step" to the next instance element (INSTANCEPOS) after drawing 1 instance (tree) { "INSTANCEPOS", 0, DXGI_FORMAT_R32G32B32_FLOAT, 1, 0, D3D11_INPUT_PER_INSTANCE_DATA, 1} /*************************************************************************************************/ }; UINT numElements = ARRAYSIZE(layout); /************************************New Stuff****************************************************/ D3D11_INPUT_ELEMENT_DESC leafLayout[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 20, D3D11_INPUT_PER_VERTEX_DATA, 0}, { "TANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 32, D3D11_INPUT_PER_VERTEX_DATA, 0}, // Instance elements // last parameter (InstanceDataStepRate) is set to the number of leaves per tree. InstanceDataStepRate is the number // of instances to draw before moving on to the next element in the instance buffer, in this case, the next tree position. // We want to make sure that ALL the leaves are drawn for the current tree before moving to the next trees position { "INSTANCEPOS", 0, DXGI_FORMAT_R32G32B32_FLOAT, 1, 0, D3D11_INPUT_PER_INSTANCE_DATA, numLeavesPerTree} }; UINT numLeafElements = ARRAYSIZE(leafLayout); /*************************************************************************************************/ struct Joint { std::wstring name; int parentID; XMFLOAT3 pos; XMFLOAT4 orientation; }; struct BoundingBox { XMFLOAT3 min; XMFLOAT3 max; }; struct FrameData { int frameID; std::vector<float> frameData; }; struct AnimJointInfo { std::wstring name; int parentID; int flags; int startIndex; }; struct ModelAnimation { int numFrames; int numJoints; int frameRate; int numAnimatedComponents; float frameTime; float totalAnimTime; float currAnimTime; std::vector<AnimJointInfo> jointInfo; std::vector<BoundingBox> frameBounds; std::vector<Joint> baseFrameJoints; std::vector<FrameData> frameData; std::vector<std::vector<Joint>> frameSkeleton; }; struct Weight { int jointID; float bias; XMFLOAT3 pos; XMFLOAT3 normal; }; struct ModelSubset { int texArrayIndex; int numTriangles; std::vector<Vertex> vertices; std::vector<XMFLOAT3> jointSpaceNormals; std::vector<DWORD> indices; std::vector<Weight> weights; std::vector<XMFLOAT3> positions; ID3D11Buffer* vertBuff; ID3D11Buffer* indexBuff; }; struct Model3D { int numSubsets; int numJoints; std::vector<Joint> joints; std::vector<ModelSubset> subsets; std::vector<ModelAnimation> animations; }; XMMATRIX playerCharWorld; Model3D NewMD5Model; //LoadMD5Model() function prototype bool LoadMD5Model(std::wstring filename, Model3D& MD5Model, std::vector<ID3D11ShaderResourceView*>& shaderResourceViewArray, std::vector<std::wstring> texFileNameArray); bool LoadMD5Anim(std::wstring filename, Model3D& MD5Model); void UpdateMD5Model(Model3D& MD5Model, float deltaTime, int animation); int WINAPI WinMain(HINSTANCE hInstance, //Main windows function HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nShowCmd) { if(!InitializeWindow(hInstance, nShowCmd, Width, Height, true)) { MessageBox(0, L"Window Initialization - Failed", L"Error", MB_OK); return 0; } if(!InitializeDirect3d11App(hInstance)) //Initialize Direct3D { MessageBox(0, L"Direct3D Initialization - Failed", L"Error", MB_OK); return 0; } if(!InitScene()) //Initialize our scene { MessageBox(0, L"Scene Initialization - Failed", L"Error", MB_OK); return 0; } if(!InitDirectInput(hInstance)) { MessageBox(0, L"Direct Input Initialization - Failed", L"Error", MB_OK); return 0; } messageloop(); CleanUp(); return 0; } bool InitializeWindow(HINSTANCE hInstance, int ShowWnd, int width, int height, bool windowed) { typedef struct _WNDCLASS { UINT cbSize; UINT style; WNDPROC lpfnWndProc; int cbClsExtra; int cbWndExtra; HANDLE hInstance; HICON hIcon; HCURSOR hCursor; HBRUSH hbrBackground; LPCTSTR lpszMenuName; LPCTSTR lpszClassName; } WNDCLASS; WNDCLASSEX wc; wc.cbSize = sizeof(WNDCLASSEX); wc.style = CS_HREDRAW | CS_VREDRAW; wc.lpfnWndProc = WndProc; wc.cbClsExtra = NULL; wc.cbWndExtra = NULL; wc.hInstance = hInstance; wc.hIcon = LoadIcon(NULL, IDI_APPLICATION); wc.hCursor = LoadCursor(NULL, IDC_ARROW); wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1); wc.lpszMenuName = NULL; wc.lpszClassName = WndClassName; wc.hIconSm = LoadIcon(NULL, IDI_APPLICATION); if (!RegisterClassEx(&wc)) { MessageBox(NULL, L"Error registering class", L"Error", MB_OK | MB_ICONERROR); return 1; } hwnd = CreateWindowEx( NULL, WndClassName, L"Lesson 32 - Instancing", WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT, width, height, NULL, NULL, hInstance, NULL ); if (!hwnd) { MessageBox(NULL, L"Error creating window", L"Error", MB_OK | MB_ICONERROR); return 1; } ShowWindow(hwnd, ShowWnd); UpdateWindow(hwnd); return true; } bool InitializeDirect3d11App(HINSTANCE hInstance) { //Describe our SwapChain Buffer DXGI_MODE_DESC bufferDesc; ZeroMemory(&bufferDesc, sizeof(DXGI_MODE_DESC)); bufferDesc.Width = Width; bufferDesc.Height = Height; bufferDesc.RefreshRate.Numerator = 60; bufferDesc.RefreshRate.Denominator = 1; bufferDesc.Format = DXGI_FORMAT_B8G8R8A8_UNORM; bufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED; bufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED; //Describe our SwapChain DXGI_SWAP_CHAIN_DESC swapChainDesc; ZeroMemory(&swapChainDesc, sizeof(DXGI_SWAP_CHAIN_DESC)); swapChainDesc.BufferDesc = bufferDesc; swapChainDesc.SampleDesc.Count = 1; swapChainDesc.SampleDesc.Quality = 0; swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; swapChainDesc.BufferCount = 1; swapChainDesc.OutputWindow = hwnd; ///////////////**************Fullscreen/Windowed**************//////////////////// swapChainDesc.Windowed = true; ///////////////**************Fullscreen/Windowed**************//////////////////// swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_DISCARD; // Create DXGI factory to enumerate adapters/////////////////////////////////////////////////////////////////////////// IDXGIFactory1 *DXGIFactory; HRESULT hr = CreateDXGIFactory1(__uuidof(IDXGIFactory1), (void**)&DXGIFactory); // Use the first adapter IDXGIAdapter1 *Adapter; hr = DXGIFactory->EnumAdapters1(0, &Adapter); DXGIFactory->Release(); //Create our Direct3D 11 Device and SwapChain////////////////////////////////////////////////////////////////////////// hr = D3D11CreateDeviceAndSwapChain(Adapter, D3D_DRIVER_TYPE_UNKNOWN, NULL, D3D11_CREATE_DEVICE_BGRA_SUPPORT, NULL, NULL, D3D11_SDK_VERSION, &swapChainDesc, &SwapChain, &d3d11Device, NULL, &d3d11DevCon); //Initialize Direct2D, Direct3D 10.1, DirectWrite InitD2D_D3D101_DWrite(Adapter); //Release the Adapter interface Adapter->Release(); //Create our BackBuffer and Render Target hr = SwapChain->GetBuffer( 0, __uuidof( ID3D11Texture2D ), (void**)&BackBuffer11 ); hr = d3d11Device->CreateRenderTargetView( BackBuffer11, NULL, &renderTargetView ); //Describe our Depth/Stencil Buffer D3D11_TEXTURE2D_DESC depthStencilDesc; depthStencilDesc.Width = Width; depthStencilDesc.Height = Height; depthStencilDesc.MipLevels = 1; depthStencilDesc.ArraySize = 1; depthStencilDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; depthStencilDesc.SampleDesc.Count = 1; depthStencilDesc.SampleDesc.Quality = 0; depthStencilDesc.Usage = D3D11_USAGE_DEFAULT; depthStencilDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL; depthStencilDesc.CPUAccessFlags = 0; depthStencilDesc.MiscFlags = 0; //Create the Depth/Stencil View d3d11Device->CreateTexture2D(&depthStencilDesc, NULL, &depthStencilBuffer); d3d11Device->CreateDepthStencilView(depthStencilBuffer, NULL, &depthStencilView); return true; } bool InitD2D_D3D101_DWrite(IDXGIAdapter1 *Adapter) { //Create our Direc3D 10.1 Device/////////////////////////////////////////////////////////////////////////////////////// hr = D3D10CreateDevice1(Adapter, D3D10_DRIVER_TYPE_HARDWARE, NULL,D3D10_CREATE_DEVICE_BGRA_SUPPORT, D3D10_FEATURE_LEVEL_9_3, D3D10_1_SDK_VERSION, &d3d101Device ); //Create Shared Texture that Direct3D 10.1 will render on////////////////////////////////////////////////////////////// D3D11_TEXTURE2D_DESC sharedTexDesc; ZeroMemory(&sharedTexDesc, sizeof(sharedTexDesc)); sharedTexDesc.Width = Width; sharedTexDesc.Height = Height; sharedTexDesc.Format = DXGI_FORMAT_B8G8R8A8_UNORM; sharedTexDesc.MipLevels = 1; sharedTexDesc.ArraySize = 1; sharedTexDesc.SampleDesc.Count = 1; sharedTexDesc.Usage = D3D11_USAGE_DEFAULT; sharedTexDesc.BindFlags = D3D11_BIND_SHADER_RESOURCE | D3D11_BIND_RENDER_TARGET; sharedTexDesc.MiscFlags = D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX; hr = d3d11Device->CreateTexture2D(&sharedTexDesc, NULL, &sharedTex11); // Get the keyed mutex for the shared texture (for D3D11)/////////////////////////////////////////////////////////////// hr = sharedTex11->QueryInterface(__uuidof(IDXGIKeyedMutex), (void**)&keyedMutex11); // Get the shared handle needed to open the shared texture in D3D10.1/////////////////////////////////////////////////// IDXGIResource *sharedResource10; HANDLE sharedHandle10; hr = sharedTex11->QueryInterface(__uuidof(IDXGIResource), (void**)&sharedResource10); hr = sharedResource10->GetSharedHandle(&sharedHandle10); sharedResource10->Release(); // Open the surface for the shared texture in D3D10.1/////////////////////////////////////////////////////////////////// IDXGISurface1 *sharedSurface10; hr = d3d101Device->OpenSharedResource(sharedHandle10, __uuidof(IDXGISurface1), (void**)(&sharedSurface10)); hr = sharedSurface10->QueryInterface(__uuidof(IDXGIKeyedMutex), (void**)&keyedMutex10); // Create D2D factory/////////////////////////////////////////////////////////////////////////////////////////////////// ID2D1Factory *D2DFactory; hr = D2D1CreateFactory(D2D1_FACTORY_TYPE_SINGLE_THREADED, __uuidof(ID2D1Factory), (void**)&D2DFactory); D2D1_RENDER_TARGET_PROPERTIES renderTargetProperties; ZeroMemory(&renderTargetProperties, sizeof(renderTargetProperties)); renderTargetProperties.type = D2D1_RENDER_TARGET_TYPE_HARDWARE; renderTargetProperties.pixelFormat = D2D1::PixelFormat(DXGI_FORMAT_UNKNOWN, D2D1_ALPHA_MODE_PREMULTIPLIED); hr = D2DFactory->CreateDxgiSurfaceRenderTarget(sharedSurface10, &renderTargetProperties, &D2DRenderTarget); sharedSurface10->Release(); D2DFactory->Release(); // Create a solid color brush to draw something with hr = D2DRenderTarget->CreateSolidColorBrush(D2D1::ColorF(1.0f, 1.0f, 1.0f, 1.0f), &Brush); //DirectWrite/////////////////////////////////////////////////////////////////////////////////////////////////////////// hr = DWriteCreateFactory(DWRITE_FACTORY_TYPE_SHARED, __uuidof(IDWriteFactory), reinterpret_cast<IUnknown**>(&DWriteFactory)); hr = DWriteFactory->CreateTextFormat( L"Script", NULL, DWRITE_FONT_WEIGHT_REGULAR, DWRITE_FONT_STYLE_NORMAL, DWRITE_FONT_STRETCH_NORMAL, 24.0f, L"en-us", &TextFormat ); hr = TextFormat->SetTextAlignment(DWRITE_TEXT_ALIGNMENT_LEADING); hr = TextFormat->SetParagraphAlignment(DWRITE_PARAGRAPH_ALIGNMENT_NEAR); d3d101Device->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_POINTLIST); return true; } bool InitDirectInput(HINSTANCE hInstance) { hr = DirectInput8Create(hInstance, DIRECTINPUT_VERSION, IID_IDirectInput8, (void**)&DirectInput, NULL); hr = DirectInput->CreateDevice(GUID_SysKeyboard, &DIKeyboard, NULL); hr = DirectInput->CreateDevice(GUID_SysMouse, &DIMouse, NULL); hr = DIKeyboard->SetDataFormat(&c_dfDIKeyboard); hr = DIKeyboard->SetCooperativeLevel(hwnd, DISCL_FOREGROUND | DISCL_NONEXCLUSIVE); hr = DIMouse->SetDataFormat(&c_dfDIMouse); hr = DIMouse->SetCooperativeLevel(hwnd, DISCL_EXCLUSIVE | DISCL_NOWINKEY | DISCL_FOREGROUND); return true; } void MoveChar(double time, XMVECTOR& destinationDirection, XMMATRIX& worldMatrix) { // Normalize our destinated direction vector destinationDirection = XMVector3Normalize(destinationDirection); // If character is currently facing the complete opposite direction as the desired direction // they will turn around VERY slowly, so we want to make sure they turn around at a normal speed // by making the old character direction not the exact opposite direction as the current character // position. Try commenting out the next two lines to see what i'm talking about if(XMVectorGetX(XMVector3Dot(destinationDirection, oldCharDirection)) == -1) oldCharDirection += XMVectorSet(0.02f, 0.0f, -0.02f, 0.0f); // Get our current characters position in the world, from it's world matrix charPosition = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); charPosition = XMVector3TransformCoord(charPosition, worldMatrix); // Rotate our character smoothly when changing direction (from the GPG series) float destDirLength = 10.0f * frameTime; // Change to the speed you want your character to rotate. This uses the game timer from an earlier lesson // The larget this value, the faster the character rotates currCharDirection = (oldCharDirection) + (destinationDirection * destDirLength); // Get the characters direction (based off time, old position, and desired // direction), by adding together the current direction and the old direction // to get vector that smoothly turns from oldCharDir to denstinationDirection currCharDirection = XMVector3Normalize(currCharDirection); // Normalize the characters current direction vector // Here we find the angle of our character (angle between current direction and world's normal vector), used so that we can actually rotate // our characters world matrix. The three lines below, together, find the angle between 0 PI and 2 PI (360 degrees, and technically, it returns // the degrees in radians from -1 PI to 1 PI, but that has the same effect as 0 PI to 2 PI) between two vectors. // XMVector3AngleBetweenNormals returns an angle between two vectors, but always a positive result between // 0 and 1 PI. Which means, it doesn't tell us which half of the 2 PI degrees that are possible. So, we have the next if statement below, // which crosses the current characters direction and the worlds forward (0,0,1), which should give us the y axis vector (assuming that our character // rotates on the xz plane). We check to see if the y vector is positive ( > 0.0f), and if it is, we set the characters direction angle to be // the opposite of what it currently is, giving us the result in -1 PI to 1 PI. float charDirAngle = XMVectorGetX(XMVector3AngleBetweenNormals( XMVector3Normalize(currCharDirection), XMVector3Normalize(DefaultForward))); if(XMVectorGetY(XMVector3Cross(currCharDirection, DefaultForward)) > 0.0f) charDirAngle = -charDirAngle; // Now we update our characters position based off the frame time, his old position, and the direction he is facing float speed = 15.0f * frameTime; charPosition = charPosition + (destinationDirection * speed); // Update characters world matrix XMMATRIX rotationMatrix; Scale = XMMatrixScaling( 0.25f, 0.25f, 0.25f ); Translation = XMMatrixTranslation(XMVectorGetX(charPosition), 0.0f, XMVectorGetZ(charPosition) ); rotationMatrix = XMMatrixRotationY(charDirAngle - 3.14159265f); // Subtract PI from angle so the character doesn't run backwards worldMatrix = Scale * rotationMatrix * Translation; // Set the characters old direction oldCharDirection = currCharDirection; // Update our animation float timeFactor = 1.0f; // You can speed up or slow down time by changing this UpdateMD5Model(NewMD5Model, time*timeFactor, 0); } void UpdateCamera() { // Rotate target around camera /*camRotationMatrix = XMMatrixRotationRollPitchYaw(camPitch, camYaw, 0); camTarget = XMVector3TransformCoord(DefaultForward, camRotationMatrix ); camTarget = XMVector3Normalize(camTarget);*/ /*XMMATRIX RotateYTempMatrix; RotateYTempMatrix = XMMatrixRotationY(camYaw); // Walk camRight = XMVector3TransformCoord(DefaultRight, RotateYTempMatrix); camForward = XMVector3TransformCoord(DefaultForward, RotateYTempMatrix); camUp = XMVector3Cross(camForward, camRight);*/ /*// Free Cam camRight = XMVector3TransformCoord(DefaultRight, camRotationMatrix); camForward = XMVector3TransformCoord(DefaultForward, camRotationMatrix); camUp = XMVector3Cross(camForward, camRight);*/ /*camPosition += moveLeftRight*camRight; camPosition += moveBackForward*camForward; moveLeftRight = 0.0f; moveBackForward = 0.0f; camTarget = camPosition + camTarget;*/ // Third Person Camera // Set the cameras target to be looking at the character. camTarget = charPosition; // This line is because this lessons model was set to stand on the point (0,0,0) (my bad), and we // don't want to just be looking at the models feet, so we move the camera's target vector up 5 units camTarget = XMVectorSetY(camTarget, XMVectorGetY(camTarget)+5.0f); // Unlike before, when we rotated the cameras target vector around the cameras position, // we are now rotating the cameras position around it's target (which is the character) // Rotate camera around target camRotationMatrix = XMMatrixRotationRollPitchYaw(-camPitch, camYaw, 0); camPosition = XMVector3TransformNormal(DefaultForward, camRotationMatrix ); camPosition = XMVector3Normalize(camPosition); // Set our cameras position to rotate around the character. We need to add 5 to the characters // position's y axis because i'm stupid and modeled the character in the 3d modeling program // to be "standing" on (0,0,0), instead of centered around it ;) Well target her head here though camPosition = (camPosition * charCamDist) + camTarget; // We need to set our cameras forward and right vectors to lay // in the worlds xz plane, since they are the vectors we will // be using to determine the direction our character is running camForward = XMVector3Normalize(camTarget - camPosition); // Get forward vector based on target camForward = XMVectorSetY(camForward, 0.0f); // set forwards y component to 0 so it lays only on // the xz plane camForward = XMVector3Normalize(camForward); // To get our camera's Right vector, we set it's x component to the negative z component from the // camera's forward vector, and the z component to the camera forwards x component camRight = XMVectorSet(-XMVectorGetZ(camForward), 0.0f, XMVectorGetX(camForward), 0.0f); // Our camera does not "roll", so we can safely assume that the cameras right vector is always // in the xz plane, so to get the up vector, we just get the normalized vector from the camera // position to the cameras target, and cross it with the camera's Right vector camUp =XMVector3Normalize(XMVector3Cross(XMVector3Normalize(camPosition - camTarget), camRight)); camView = XMMatrixLookAtLH( camPosition, camTarget, camUp ); } void DetectInput(double time) { DIMOUSESTATE mouseCurrState; BYTE keyboardState[256]; DIKeyboard->Acquire(); DIMouse->Acquire(); DIMouse->GetDeviceState(sizeof(DIMOUSESTATE), &mouseCurrState); DIKeyboard->GetDeviceState(sizeof(keyboardState),(LPVOID)&keyboardState); if(keyboardState[DIK_ESCAPE] & 0x80) PostMessage(hwnd, WM_DESTROY, 0, 0); float speed = 10.0f * time; bool moveChar = false; XMVECTOR desiredCharDir = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); if(keyboardState[DIK_A] & 0x80) { desiredCharDir += (camRight); moveChar = true; } if(keyboardState[DIK_D] & 0x80) { desiredCharDir += -(camRight); moveChar = true; } if(keyboardState[DIK_W] & 0x80) { desiredCharDir += (camForward); moveChar = true; } if(keyboardState[DIK_S] & 0x80) { desiredCharDir += -(camForward); moveChar = true; } if((mouseCurrState.lX != mouseLastState.lX) || (mouseCurrState.lY != mouseLastState.lY)) { camYaw += mouseLastState.lX * 0.002f; camPitch += mouseCurrState.lY * 0.002f; // Check that the camera doesn't go over the top or under the player if(camPitch > 0.85f) camPitch = 0.85f; if(camPitch < -0.85f) camPitch = -0.85f; mouseLastState = mouseCurrState; } if(moveChar == true) MoveChar(time, desiredCharDir, playerCharWorld); UpdateCamera(); return; } void CleanUp() { SwapChain->SetFullscreenState(false, NULL); PostMessage(hwnd, WM_DESTROY, 0, 0); //Release the COM Objects we created SwapChain->Release(); d3d11Device->Release(); d3d11DevCon->Release(); renderTargetView->Release(); VS->Release(); PS->Release(); VS_Buffer->Release(); PS_Buffer->Release(); vertLayout->Release(); depthStencilView->Release(); depthStencilBuffer->Release(); cbPerObjectBuffer->Release(); Transparency->Release(); CCWcullMode->Release(); CWcullMode->Release(); d3d101Device->Release(); keyedMutex11->Release(); keyedMutex10->Release(); D2DRenderTarget->Release(); Brush->Release(); BackBuffer11->Release(); sharedTex11->Release(); DWriteFactory->Release(); TextFormat->Release(); d2dTexture->Release(); cbPerFrameBuffer->Release(); DIKeyboard->Unacquire(); DIMouse->Unacquire(); DirectInput->Release(); sphereIndexBuffer->Release(); sphereVertBuffer->Release(); SKYMAP_VS->Release(); SKYMAP_PS->Release(); SKYMAP_VS_Buffer->Release(); SKYMAP_PS_Buffer->Release(); smrv->Release(); DSLessEqual->Release(); RSCullNone->Release(); meshVertBuff->Release(); meshIndexBuff->Release(); for(int i = 0; i < NewMD5Model.numSubsets; i++) { NewMD5Model.subsets[i].indexBuff->Release(); NewMD5Model.subsets[i].vertBuff->Release(); } } bool LoadMD5Anim(std::wstring filename, Model3D& MD5Model) { ModelAnimation tempAnim; // Temp animation to later store in our model's animation array std::wifstream fileIn (filename.c_str()); // Open file std::wstring checkString; // Stores the next string from our file if(fileIn) // Check if the file was opened { while(fileIn) // Loop until the end of the file is reached { fileIn >> checkString; // Get next string from file if ( checkString == L"MD5Version" ) // Get MD5 version (this function supports version 10) { fileIn >> checkString; /*MessageBox(0, checkString.c_str(), //display message L"MD5Version", MB_OK);*/ } else if ( checkString == L"commandline" ) { std::getline(fileIn, checkString); // Ignore the rest of this line } else if ( checkString == L"numFrames" ) { fileIn >> tempAnim.numFrames; // Store number of frames in this animation } else if ( checkString == L"numJoints" ) { fileIn >> tempAnim.numJoints; // Store number of joints (must match .md5mesh) } else if ( checkString == L"frameRate" ) { fileIn >> tempAnim.frameRate; // Store animation's frame rate (frames per second) } else if ( checkString == L"numAnimatedComponents" ) { fileIn >> tempAnim.numAnimatedComponents; // Number of components in each frame section } else if ( checkString == L"hierarchy" ) { fileIn >> checkString; // Skip opening bracket "{" for(int i = 0; i < tempAnim.numJoints; i++) // Load in each joint { AnimJointInfo tempJoint; fileIn >> tempJoint.name; // Get joints name // Sometimes the names might contain spaces. If that is the case, we need to continue // to read the name until we get to the closing " (quotation marks) if(tempJoint.name[tempJoint.name.size()-1] != '"') { wchar_t checkChar; bool jointNameFound = false; while(!jointNameFound) { checkChar = fileIn.get(); if(checkChar == '"') jointNameFound = true; tempJoint.name += checkChar; } } // Remove the quotation marks from joints name tempJoint.name.erase(0, 1); tempJoint.name.erase(tempJoint.name.size()-1, 1); fileIn >> tempJoint.parentID; // Get joints parent ID fileIn >> tempJoint.flags; // Get flags fileIn >> tempJoint.startIndex; // Get joints start index // Make sure the joint exists in the model, and the parent ID's match up // because the bind pose (md5mesh) joint hierarchy and the animations (md5anim) // joint hierarchy must match up bool jointMatchFound = false; for(int k = 0; k < MD5Model.numJoints; k++) { if(MD5Model.joints[k].name == tempJoint.name) { if(MD5Model.joints[k].parentID == tempJoint.parentID) { jointMatchFound = true; tempAnim.jointInfo.push_back(tempJoint); } } } if(!jointMatchFound) // If the skeleton system does not match up, return false return false; // You might want to add an error message here std::getline(fileIn, checkString); // Skip rest of this line } } else if ( checkString == L"bounds" ) // Load in the AABB for each animation { fileIn >> checkString; // Skip opening bracket "{" for(int i = 0; i < tempAnim.numFrames; i++) { BoundingBox tempBB; fileIn >> checkString; // Skip "(" fileIn >> tempBB.min.x >> tempBB.min.z >> tempBB.min.y; fileIn >> checkString >> checkString; // Skip ") (" fileIn >> tempBB.max.x >> tempBB.max.z >> tempBB.max.y; fileIn >> checkString; // Skip ")" tempAnim.frameBounds.push_back(tempBB); } } else if ( checkString == L"baseframe" ) // This is the default position for the animation { // All frames will build their skeletons off this fileIn >> checkString; // Skip opening bracket "{" for(int i = 0; i < tempAnim.numJoints; i++) { Joint tempBFJ; fileIn >> checkString; // Skip "(" fileIn >> tempBFJ.pos.x >> tempBFJ.pos.z >> tempBFJ.pos.y; fileIn >> checkString >> checkString; // Skip ") (" fileIn >> tempBFJ.orientation.x >> tempBFJ.orientation.z >> tempBFJ.orientation.y; fileIn >> checkString; // Skip ")" tempAnim.baseFrameJoints.push_back(tempBFJ); } } else if ( checkString == L"frame" ) // Load in each frames skeleton (the parts of each joint that changed from the base frame) { FrameData tempFrame; fileIn >> tempFrame.frameID; // Get the frame ID fileIn >> checkString; // Skip opening bracket "{" for(int i = 0; i < tempAnim.numAnimatedComponents; i++) { float tempData; fileIn >> tempData; // Get the data tempFrame.frameData.push_back(tempData); } tempAnim.frameData.push_back(tempFrame); ///*** build the frame skeleton ***/// std::vector<Joint> tempSkeleton; for(int i = 0; i < tempAnim.jointInfo.size(); i++) { int k = 0; // Keep track of position in frameData array // Start the frames joint with the base frame's joint Joint tempFrameJoint = tempAnim.baseFrameJoints[i]; tempFrameJoint.parentID = tempAnim.jointInfo[i].parentID; // Notice how I have been flipping y and z. this is because some modeling programs such as // 3ds max (which is what I use) use a right handed coordinate system. Because of this, we // need to flip the y and z axes. If your having problems loading some models, it's possible // the model was created in a left hand coordinate system. in that case, just reflip all the // y and z axes in our md5 mesh and anim loader. if(tempAnim.jointInfo[i].flags & 1) // pos.x ( 000001 ) tempFrameJoint.pos.x = tempFrame.frameData[tempAnim.jointInfo[i].startIndex + k++]; if(tempAnim.jointInfo[i].flags & 2) // pos.y ( 000010 ) tempFrameJoint.pos.z = tempFrame.frameData[tempAnim.jointInfo[i].startIndex + k++]; if(tempAnim.jointInfo[i].flags & 4) // pos.z ( 000100 ) tempFrameJoint.pos.y = tempFrame.frameData[tempAnim.jointInfo[i].startIndex + k++]; if(tempAnim.jointInfo[i].flags & 8) // orientation.x ( 001000 ) tempFrameJoint.orientation.x = tempFrame.frameData[tempAnim.jointInfo[i].startIndex + k++]; if(tempAnim.jointInfo[i].flags & 16) // orientation.y ( 010000 ) tempFrameJoint.orientation.z = tempFrame.frameData[tempAnim.jointInfo[i].startIndex + k++]; if(tempAnim.jointInfo[i].flags & 32) // orientation.z ( 100000 ) tempFrameJoint.orientation.y = tempFrame.frameData[tempAnim.jointInfo[i].startIndex + k++]; // Compute the quaternions w float t = 1.0f - ( tempFrameJoint.orientation.x * tempFrameJoint.orientation.x ) - ( tempFrameJoint.orientation.y * tempFrameJoint.orientation.y ) - ( tempFrameJoint.orientation.z * tempFrameJoint.orientation.z ); if ( t < 0.0f ) { tempFrameJoint.orientation.w = 0.0f; } else { tempFrameJoint.orientation.w = -sqrtf(t); } // Now, if the upper arm of your skeleton moves, you need to also move the lower part of your arm, and then the hands, and then finally the fingers (possibly weapon or tool too) // This is where joint hierarchy comes in. We start at the top of the hierarchy, and move down to each joints child, rotating and translating them based on their parents rotation // and translation. We can assume that by the time we get to the child, the parent has already been rotated and transformed based of it's parent. We can assume this because // the child should never come before the parent in the files we loaded in. if(tempFrameJoint.parentID >= 0) { Joint parentJoint = tempSkeleton[tempFrameJoint.parentID]; // Turn the XMFLOAT3 and 4's into vectors for easier computation XMVECTOR parentJointOrientation = XMVectorSet(parentJoint.orientation.x, parentJoint.orientation.y, parentJoint.orientation.z, parentJoint.orientation.w); XMVECTOR tempJointPos = XMVectorSet(tempFrameJoint.pos.x, tempFrameJoint.pos.y, tempFrameJoint.pos.z, 0.0f); XMVECTOR parentOrientationConjugate = XMVectorSet(-parentJoint.orientation.x, -parentJoint.orientation.y, -parentJoint.orientation.z, parentJoint.orientation.w); // Calculate current joints position relative to its parents position XMFLOAT3 rotatedPos; XMStoreFloat3(&rotatedPos, XMQuaternionMultiply(XMQuaternionMultiply(parentJointOrientation, tempJointPos), parentOrientationConjugate)); // Translate the joint to model space by adding the parent joint's pos to it tempFrameJoint.pos.x = rotatedPos.x + parentJoint.pos.x; tempFrameJoint.pos.y = rotatedPos.y + parentJoint.pos.y; tempFrameJoint.pos.z = rotatedPos.z + parentJoint.pos.z; // Currently the joint is oriented in its parent joints space, we now need to orient it in // model space by multiplying the two orientations together (parentOrientation * childOrientation) <- In that order XMVECTOR tempJointOrient = XMVectorSet(tempFrameJoint.orientation.x, tempFrameJoint.orientation.y, tempFrameJoint.orientation.z, tempFrameJoint.orientation.w); tempJointOrient = XMQuaternionMultiply(parentJointOrientation, tempJointOrient); // Normalize the orienation quaternion tempJointOrient = XMQuaternionNormalize(tempJointOrient); XMStoreFloat4(&tempFrameJoint.orientation, tempJointOrient); } // Store the joint into our temporary frame skeleton tempSkeleton.push_back(tempFrameJoint); } // Push back our newly created frame skeleton into the animation's frameSkeleton array tempAnim.frameSkeleton.push_back(tempSkeleton); fileIn >> checkString; // Skip closing bracket "}" } } // Calculate and store some usefull animation data tempAnim.frameTime = 1.0f / tempAnim.frameRate; // Set the time per frame tempAnim.totalAnimTime = tempAnim.numFrames * tempAnim.frameTime; // Set the total time the animation takes tempAnim.currAnimTime = 0.0f; // Set the current time to zero MD5Model.animations.push_back(tempAnim); // Push back the animation into our model object } else // If the file was not loaded { SwapChain->SetFullscreenState(false, NULL); // Make sure we are out of fullscreen // create message std::wstring message = L"Could not open: "; message += filename; MessageBox(0, message.c_str(), // display message L"Error", MB_OK); return false; } return true; } void UpdateMD5Model(Model3D& MD5Model, float deltaTime, int animation) { MD5Model.animations[animation].currAnimTime += deltaTime; // Update the current animation time if(MD5Model.animations[animation].currAnimTime > MD5Model.animations[animation].totalAnimTime) MD5Model.animations[animation].currAnimTime = 0.0f; // Which frame are we on float currentFrame = MD5Model.animations[animation].currAnimTime * MD5Model.animations[animation].frameRate; int frame0 = floorf( currentFrame ); int frame1 = frame0 + 1; // Make sure we don't go over the number of frames if(frame0 == MD5Model.animations[animation].numFrames-1) frame1 = 0; float interpolation = currentFrame - frame0; // Get the remainder (in time) between frame0 and frame1 to use as interpolation factor std::vector<Joint> interpolatedSkeleton; // Create a frame skeleton to store the interpolated skeletons in // Compute the interpolated skeleton for( int i = 0; i < MD5Model.animations[animation].numJoints; i++) { Joint tempJoint; Joint joint0 = MD5Model.animations[animation].frameSkeleton[frame0][i]; // Get the i'th joint of frame0's skeleton Joint joint1 = MD5Model.animations[animation].frameSkeleton[frame1][i]; // Get the i'th joint of frame1's skeleton tempJoint.parentID = joint0.parentID; // Set the tempJoints parent id // Turn the two quaternions into XMVECTORs for easy computations XMVECTOR joint0Orient = XMVectorSet(joint0.orientation.x, joint0.orientation.y, joint0.orientation.z, joint0.orientation.w); XMVECTOR joint1Orient = XMVectorSet(joint1.orientation.x, joint1.orientation.y, joint1.orientation.z, joint1.orientation.w); // Interpolate positions tempJoint.pos.x = joint0.pos.x + (interpolation * (joint1.pos.x - joint0.pos.x)); tempJoint.pos.y = joint0.pos.y + (interpolation * (joint1.pos.y - joint0.pos.y)); tempJoint.pos.z = joint0.pos.z + (interpolation * (joint1.pos.z - joint0.pos.z)); // Interpolate orientations using spherical interpolation (Slerp) XMStoreFloat4(&tempJoint.orientation, XMQuaternionSlerp(joint0Orient, joint1Orient, interpolation)); interpolatedSkeleton.push_back(tempJoint); // Push the joint back into our interpolated skeleton } for ( int k = 0; k < MD5Model.numSubsets; k++) { for ( int i = 0; i < MD5Model.subsets[k].vertices.size(); ++i ) { Vertex tempVert = MD5Model.subsets[k].vertices[i]; tempVert.pos = XMFLOAT3(0, 0, 0); // Make sure the vertex's pos is cleared first tempVert.normal = XMFLOAT3(0,0,0); // Clear vertices normal // Sum up the joints and weights information to get vertex's position and normal for ( int j = 0; j < tempVert.WeightCount; ++j ) { Weight tempWeight = MD5Model.subsets[k].weights[tempVert.StartWeight + j]; Joint tempJoint = interpolatedSkeleton[tempWeight.jointID]; // Convert joint orientation and weight pos to vectors for easier computation XMVECTOR tempJointOrientation = XMVectorSet(tempJoint.orientation.x, tempJoint.orientation.y, tempJoint.orientation.z, tempJoint.orientation.w); XMVECTOR tempWeightPos = XMVectorSet(tempWeight.pos.x, tempWeight.pos.y, tempWeight.pos.z, 0.0f); // We will need to use the conjugate of the joint orientation quaternion XMVECTOR tempJointOrientationConjugate = XMQuaternionInverse(tempJointOrientation); // Calculate vertex position (in joint space, eg. rotate the point around (0,0,0)) for this weight using the joint orientation quaternion and its conjugate // We can rotate a point using a quaternion with the equation "rotatedPoint = quaternion * point * quaternionConjugate" XMFLOAT3 rotatedPoint; XMStoreFloat3(&rotatedPoint, XMQuaternionMultiply(XMQuaternionMultiply(tempJointOrientation, tempWeightPos), tempJointOrientationConjugate)); // Now move the verices position from joint space (0,0,0) to the joints position in world space, taking the weights bias into account tempVert.pos.x += ( tempJoint.pos.x + rotatedPoint.x ) * tempWeight.bias; tempVert.pos.y += ( tempJoint.pos.y + rotatedPoint.y ) * tempWeight.bias; tempVert.pos.z += ( tempJoint.pos.z + rotatedPoint.z ) * tempWeight.bias; // Compute the normals for this frames skeleton using the weight normals from before // We can comput the normals the same way we compute the vertices position, only we don't have to translate them (just rotate) XMVECTOR tempWeightNormal = XMVectorSet(tempWeight.normal.x, tempWeight.normal.y, tempWeight.normal.z, 0.0f); // Rotate the normal XMStoreFloat3(&rotatedPoint, XMQuaternionMultiply(XMQuaternionMultiply(tempJointOrientation, tempWeightNormal), tempJointOrientationConjugate)); // Add to vertices normal and ake weight bias into account tempVert.normal.x -= rotatedPoint.x * tempWeight.bias; tempVert.normal.y -= rotatedPoint.y * tempWeight.bias; tempVert.normal.z -= rotatedPoint.z * tempWeight.bias; } MD5Model.subsets[k].positions[i] = tempVert.pos; // Store the vertices position in the position vector instead of straight into the vertex vector MD5Model.subsets[k].vertices[i].normal = tempVert.normal; // Store the vertices normal XMStoreFloat3(&MD5Model.subsets[k].vertices[i].normal, XMVector3Normalize(XMLoadFloat3(&MD5Model.subsets[k].vertices[i].normal))); } // Put the positions into the vertices for this subset for(int i = 0; i < MD5Model.subsets[k].vertices.size(); i++) { MD5Model.subsets[k].vertices[i].pos = MD5Model.subsets[k].positions[i]; } // Update the subsets vertex buffer // First lock the buffer D3D11_MAPPED_SUBRESOURCE mappedVertBuff; hr = d3d11DevCon->Map(MD5Model.subsets[k].vertBuff, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedVertBuff); // Copy the data into the vertex buffer. memcpy(mappedVertBuff.pData, &MD5Model.subsets[k].vertices[0], (sizeof(Vertex) * MD5Model.subsets[k].vertices.size())); d3d11DevCon->Unmap(MD5Model.subsets[k].vertBuff, 0); // The line below is another way to update a buffer. You will use this when you want to update a buffer less // than once per frame, since the GPU reads will be faster (the buffer was created as a DEFAULT buffer instead // of a DYNAMIC buffer), and the CPU writes will be slower. You can try both methods to find out which one is faster // for you. if you want to use the line below, you will have to create the buffer with D3D11_USAGE_DEFAULT instead // of D3D11_USAGE_DYNAMIC //d3d11DevCon->UpdateSubresource( MD5Model.subsets[k].vertBuff, 0, NULL, &MD5Model.subsets[k].vertices[0], 0, 0 ); } } bool LoadMD5Model(std::wstring filename, Model3D& MD5Model, std::vector<ID3D11ShaderResourceView*>& shaderResourceViewArray, std::vector<std::wstring> texFileNameArray) { std::wifstream fileIn (filename.c_str()); // Open file std::wstring checkString; // Stores the next string from our file if(fileIn) // Check if the file was opened { while(fileIn) // Loop until the end of the file is reached { fileIn >> checkString; // Get next string from file if(checkString == L"MD5Version") // Get MD5 version (this function supports version 10) { /*fileIn >> checkString; MessageBox(0, checkString.c_str(), //display message L"MD5Version", MB_OK);*/ } else if ( checkString == L"commandline" ) { std::getline(fileIn, checkString); // Ignore the rest of this line } else if ( checkString == L"numJoints" ) { fileIn >> MD5Model.numJoints; // Store number of joints } else if ( checkString == L"numMeshes" ) { fileIn >> MD5Model.numSubsets; // Store number of meshes or subsets which we will call them } else if ( checkString == L"joints" ) { Joint tempJoint; fileIn >> checkString; // Skip the "{" for(int i = 0; i < MD5Model.numJoints; i++) { fileIn >> tempJoint.name; // Store joints name // Sometimes the names might contain spaces. If that is the case, we need to continue // to read the name until we get to the closing " (quotation marks) if(tempJoint.name[tempJoint.name.size()-1] != '"') { wchar_t checkChar; bool jointNameFound = false; while(!jointNameFound) { checkChar = fileIn.get(); if(checkChar == '"') jointNameFound = true; tempJoint.name += checkChar; } } fileIn >> tempJoint.parentID; // Store Parent joint's ID fileIn >> checkString; // Skip the "(" // Store position of this joint (swap y and z axis if model was made in RH Coord Sys) fileIn >> tempJoint.pos.x >> tempJoint.pos.z >> tempJoint.pos.y; fileIn >> checkString >> checkString; // Skip the ")" and "(" // Store orientation of this joint fileIn >> tempJoint.orientation.x >> tempJoint.orientation.z >> tempJoint.orientation.y; // Remove the quotation marks from joints name tempJoint.name.erase(0, 1); tempJoint.name.erase(tempJoint.name.size()-1, 1); // Compute the w axis of the quaternion (The MD5 model uses a 3D vector to describe the // direction the bone is facing. However, we need to turn this into a quaternion, and the way // quaternions work, is the xyz values describe the axis of rotation, while the w is a value // between 0 and 1 which describes the angle of rotation) float t = 1.0f - ( tempJoint.orientation.x * tempJoint.orientation.x ) - ( tempJoint.orientation.y * tempJoint.orientation.y ) - ( tempJoint.orientation.z * tempJoint.orientation.z ); if ( t < 0.0f ) { tempJoint.orientation.w = 0.0f; } else { tempJoint.orientation.w = -sqrtf(t); } std::getline(fileIn, checkString); // Skip rest of this line MD5Model.joints.push_back(tempJoint); // Store the joint into this models joint vector } fileIn >> checkString; // Skip the "}" } else if ( checkString == L"mesh") { ModelSubset subset; int numVerts, numTris, numWeights; fileIn >> checkString; // Skip the "{" fileIn >> checkString; while ( checkString != L"}" ) // Read until '}' { // In this lesson, for the sake of simplicity, we will assume a textures filename is givin here. // Usually though, the name of a material (stored in a material library. Think back to the lesson on // loading .obj files, where the material library was contained in the file .mtl) is givin. Let this // be an exercise to load the material from a material library such as obj's .mtl file, instead of // just the texture like we will do here. if(checkString == L"shader") // Load the texture or material { std::wstring fileNamePath; fileIn >> fileNamePath; // Get texture's filename // Take spaces into account if filename or material name has a space in it if(fileNamePath[fileNamePath.size()-1] != '"') { wchar_t checkChar; bool fileNameFound = false; while(!fileNameFound) { checkChar = fileIn.get(); if(checkChar == '"') fileNameFound = true; fileNamePath += checkChar; } } // Remove the quotation marks from texture path fileNamePath.erase(0, 1); fileNamePath.erase(fileNamePath.size()-1, 1); //check if this texture has already been loaded bool alreadyLoaded = false; for(int i = 0; i < texFileNameArray.size(); ++i) { if(fileNamePath == texFileNameArray[i]) { alreadyLoaded = true; subset.texArrayIndex = i; } } //if the texture is not already loaded, load it now if(!alreadyLoaded) { ID3D11ShaderResourceView* tempMeshSRV; hr = D3DX11CreateShaderResourceViewFromFile( d3d11Device, fileNamePath.c_str(), NULL, NULL, &tempMeshSRV, NULL ); if(SUCCEEDED(hr)) { texFileNameArray.push_back(fileNamePath.c_str()); subset.texArrayIndex = shaderResourceViewArray.size(); shaderResourceViewArray.push_back(tempMeshSRV); } else { MessageBox(0, fileNamePath.c_str(), //display message L"Could Not Open:", MB_OK); return false; } } std::getline(fileIn, checkString); // Skip rest of this line } else if ( checkString == L"numverts") { fileIn >> numVerts; // Store number of vertices std::getline(fileIn, checkString); // Skip rest of this line for(int i = 0; i < numVerts; i++) { Vertex tempVert; fileIn >> checkString // Skip "vert # (" >> checkString >> checkString; fileIn >> tempVert.texCoord.x // Store tex coords >> tempVert.texCoord.y; fileIn >> checkString; // Skip ")" fileIn >> tempVert.StartWeight; // Index of first weight this vert will be weighted to fileIn >> tempVert.WeightCount; // Number of weights for this vertex std::getline(fileIn, checkString); // Skip rest of this line subset.vertices.push_back(tempVert); // Push back this vertex into subsets vertex vector } } else if ( checkString == L"numtris") { fileIn >> numTris; subset.numTriangles = numTris; std::getline(fileIn, checkString); // Skip rest of this line for(int i = 0; i < numTris; i++) // Loop through each triangle { DWORD tempIndex; fileIn >> checkString; // Skip "tri" fileIn >> checkString; // Skip tri counter for(int k = 0; k < 3; k++) // Store the 3 indices { fileIn >> tempIndex; subset.indices.push_back(tempIndex); } std::getline(fileIn, checkString); // Skip rest of this line } } else if ( checkString == L"numweights") { fileIn >> numWeights; std::getline(fileIn, checkString); // Skip rest of this line for(int i = 0; i < numWeights; i++) { Weight tempWeight; fileIn >> checkString >> checkString; // Skip "weight #" fileIn >> tempWeight.jointID; // Store weight's joint ID fileIn >> tempWeight.bias; // Store weight's influence over a vertex fileIn >> checkString; // Skip "(" fileIn >> tempWeight.pos.x // Store weight's pos in joint's local space >> tempWeight.pos.z >> tempWeight.pos.y; std::getline(fileIn, checkString); // Skip rest of this line subset.weights.push_back(tempWeight); // Push back tempWeight into subsets Weight array } } else std::getline(fileIn, checkString); // Skip anything else fileIn >> checkString; // Skip "}" } //*** find each vertex's position using the joints and weights ***// for ( int i = 0; i < subset.vertices.size(); ++i ) { Vertex tempVert = subset.vertices[i]; tempVert.pos = XMFLOAT3(0, 0, 0); // Make sure the vertex's pos is cleared first // Sum up the joints and weights information to get vertex's position for ( int j = 0; j < tempVert.WeightCount; ++j ) { Weight tempWeight = subset.weights[tempVert.StartWeight + j]; Joint tempJoint = MD5Model.joints[tempWeight.jointID]; // Convert joint orientation and weight pos to vectors for easier computation // When converting a 3d vector to a quaternion, you should put 0 for "w", and // When converting a quaternion to a 3d vector, you can just ignore the "w" XMVECTOR tempJointOrientation = XMVectorSet(tempJoint.orientation.x, tempJoint.orientation.y, tempJoint.orientation.z, tempJoint.orientation.w); XMVECTOR tempWeightPos = XMVectorSet(tempWeight.pos.x, tempWeight.pos.y, tempWeight.pos.z, 0.0f); // We will need to use the conjugate of the joint orientation quaternion // To get the conjugate of a quaternion, all you have to do is inverse the x, y, and z XMVECTOR tempJointOrientationConjugate = XMVectorSet(-tempJoint.orientation.x, -tempJoint.orientation.y, -tempJoint.orientation.z, tempJoint.orientation.w); // Calculate vertex position (in joint space, eg. rotate the point around (0,0,0)) for this weight using the joint orientation quaternion and its conjugate // We can rotate a point using a quaternion with the equation "rotatedPoint = quaternion * point * quaternionConjugate" XMFLOAT3 rotatedPoint; XMStoreFloat3(&rotatedPoint, XMQuaternionMultiply(XMQuaternionMultiply(tempJointOrientation, tempWeightPos), tempJointOrientationConjugate)); // Now move the verices position from joint space (0,0,0) to the joints position in world space, taking the weights bias into account // The weight bias is used because multiple weights might have an effect on the vertices final position. Each weight is attached to one joint. tempVert.pos.x += ( tempJoint.pos.x + rotatedPoint.x ) * tempWeight.bias; tempVert.pos.y += ( tempJoint.pos.y + rotatedPoint.y ) * tempWeight.bias; tempVert.pos.z += ( tempJoint.pos.z + rotatedPoint.z ) * tempWeight.bias; // Basically what has happened above, is we have taken the weights position relative to the joints position // we then rotate the weights position (so that the weight is actually being rotated around (0, 0, 0) in world space) using // the quaternion describing the joints rotation. We have stored this rotated point in rotatedPoint, which we then add to // the joints position (because we rotated the weight's position around (0,0,0) in world space, and now need to translate it // so that it appears to have been rotated around the joints position). Finally we multiply the answer with the weights bias, // or how much control the weight has over the final vertices position. All weight's bias effecting a single vertex's position // must add up to 1. } subset.positions.push_back(tempVert.pos); // Store the vertices position in the position vector instead of straight into the vertex vector // since we can use the positions vector for certain things like collision detection or picking // without having to work with the entire vertex structure. } // Put the positions into the vertices for this subset for(int i = 0; i < subset.vertices.size(); i++) { subset.vertices[i].pos = subset.positions[i]; } //*** Calculate vertex normals using normal averaging ***/// std::vector<XMFLOAT3> tempNormal; //normalized and unnormalized normals XMFLOAT3 unnormalized = XMFLOAT3(0.0f, 0.0f, 0.0f); //Used to get vectors (sides) from the position of the verts float vecX, vecY, vecZ; //Two edges of our triangle XMVECTOR edge1 = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); XMVECTOR edge2 = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); //Compute face normals for(int i = 0; i < subset.numTriangles; ++i) { //Get the vector describing one edge of our triangle (edge 0,2) vecX = subset.vertices[subset.indices[(i*3)]].pos.x - subset.vertices[subset.indices[(i*3)+2]].pos.x; vecY = subset.vertices[subset.indices[(i*3)]].pos.y - subset.vertices[subset.indices[(i*3)+2]].pos.y; vecZ = subset.vertices[subset.indices[(i*3)]].pos.z - subset.vertices[subset.indices[(i*3)+2]].pos.z; edge1 = XMVectorSet(vecX, vecY, vecZ, 0.0f); //Create our first edge //Get the vector describing another edge of our triangle (edge 2,1) vecX = subset.vertices[subset.indices[(i*3)+2]].pos.x - subset.vertices[subset.indices[(i*3)+1]].pos.x; vecY = subset.vertices[subset.indices[(i*3)+2]].pos.y - subset.vertices[subset.indices[(i*3)+1]].pos.y; vecZ = subset.vertices[subset.indices[(i*3)+2]].pos.z - subset.vertices[subset.indices[(i*3)+1]].pos.z; edge2 = XMVectorSet(vecX, vecY, vecZ, 0.0f); //Create our second edge //Cross multiply the two edge vectors to get the un-normalized face normal XMStoreFloat3(&unnormalized, XMVector3Cross(edge1, edge2)); tempNormal.push_back(unnormalized); } //Compute vertex normals (normal Averaging) XMVECTOR normalSum = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); int facesUsing = 0; float tX, tY, tZ; //temp axis variables //Go through each vertex for(int i = 0; i < subset.vertices.size(); ++i) { //Check which triangles use this vertex for(int j = 0; j < subset.numTriangles; ++j) { if(subset.indices[j*3] == i || subset.indices[(j*3)+1] == i || subset.indices[(j*3)+2] == i) { tX = XMVectorGetX(normalSum) + tempNormal[j].x; tY = XMVectorGetY(normalSum) + tempNormal[j].y; tZ = XMVectorGetZ(normalSum) + tempNormal[j].z; normalSum = XMVectorSet(tX, tY, tZ, 0.0f); //If a face is using the vertex, add the unormalized face normal to the normalSum facesUsing++; } } //Get the actual normal by dividing the normalSum by the number of faces sharing the vertex normalSum = normalSum / facesUsing; //Normalize the normalSum vector normalSum = XMVector3Normalize(normalSum); //Store the normal and tangent in our current vertex subset.vertices[i].normal.x = -XMVectorGetX(normalSum); subset.vertices[i].normal.y = -XMVectorGetY(normalSum); subset.vertices[i].normal.z = -XMVectorGetZ(normalSum); // Create the joint space normal for easy normal calculations in animation Vertex tempVert = subset.vertices[i]; // Get the current vertex subset.jointSpaceNormals.push_back(XMFLOAT3(0,0,0)); // Push back a blank normal XMVECTOR normal = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); // Clear normal for ( int k = 0; k < tempVert.WeightCount; k++) // Loop through each of the vertices weights { Joint tempJoint = MD5Model.joints[subset.weights[tempVert.StartWeight + k].jointID]; // Get the joints orientation XMVECTOR jointOrientation = XMVectorSet(tempJoint.orientation.x, tempJoint.orientation.y, tempJoint.orientation.z, tempJoint.orientation.w); // Calculate normal based off joints orientation (turn into joint space) normal = XMQuaternionMultiply(XMQuaternionMultiply(XMQuaternionInverse(jointOrientation), normalSum), jointOrientation); XMStoreFloat3(&subset.weights[tempVert.StartWeight + k].normal, XMVector3Normalize(normal)); // Store the normalized quaternion into our weights normal } //Clear normalSum, facesUsing for next vertex normalSum = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); facesUsing = 0; } // Create index buffer D3D11_BUFFER_DESC indexBufferDesc; ZeroMemory( &indexBufferDesc, sizeof(indexBufferDesc) ); indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(DWORD) * subset.numTriangles * 3; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = &subset.indices[0]; d3d11Device->CreateBuffer(&indexBufferDesc, &iinitData, &subset.indexBuff); //Create Vertex Buffer D3D11_BUFFER_DESC vertexBufferDesc; ZeroMemory( &vertexBufferDesc, sizeof(vertexBufferDesc) ); vertexBufferDesc.Usage = D3D11_USAGE_DYNAMIC; // We will be updating this buffer, so we must set as dynamic vertexBufferDesc.ByteWidth = sizeof( Vertex ) * subset.vertices.size(); vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; // Give CPU power to write to buffer vertexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; ZeroMemory( &vertexBufferData, sizeof(vertexBufferData) ); vertexBufferData.pSysMem = &subset.vertices[0]; hr = d3d11Device->CreateBuffer( &vertexBufferDesc, &vertexBufferData, &subset.vertBuff); // Push back the temp subset into the models subset vector MD5Model.subsets.push_back(subset); } } } else { SwapChain->SetFullscreenState(false, NULL); // Make sure we are out of fullscreen // create message std::wstring message = L"Could not open: "; message += filename; MessageBox(0, message.c_str(), // display message L"Error", MB_OK); return false; } return true; } bool LoadObjModel(std::wstring filename, ID3D11Buffer** vertBuff, ID3D11Buffer** indexBuff, std::vector<int>& subsetIndexStart, std::vector<int>& subsetMaterialArray, std::vector<SurfaceMaterial>& material, int& subsetCount, bool isRHCoordSys, bool computeNormals) { HRESULT hr = 0; std::wifstream fileIn (filename.c_str()); //Open file std::wstring meshMatLib; //String to hold our obj material library filename //Arrays to store our model's information std::vector<DWORD> indices; std::vector<XMFLOAT3> vertPos; std::vector<XMFLOAT3> vertNorm; std::vector<XMFLOAT2> vertTexCoord; std::vector<std::wstring> meshMaterials; //Vertex definition indices std::vector<int> vertPosIndex; std::vector<int> vertNormIndex; std::vector<int> vertTCIndex; //Make sure we have a default if no tex coords or normals are defined bool hasTexCoord = false; bool hasNorm = false; //Temp variables to store into vectors std::wstring meshMaterialsTemp; int vertPosIndexTemp; int vertNormIndexTemp; int vertTCIndexTemp; wchar_t checkChar; //The variable we will use to store one char from file at a time std::wstring face; //Holds the string containing our face vertices int vIndex = 0; //Keep track of our vertex index count int triangleCount = 0; //Total Triangles int totalVerts = 0; int meshTriangles = 0; //Check to see if the file was opened if (fileIn) { while(fileIn) { checkChar = fileIn.get(); //Get next char switch (checkChar) { case '#': checkChar = fileIn.get(); while(checkChar != '\n') checkChar = fileIn.get(); break; case 'v': //Get Vertex Descriptions checkChar = fileIn.get(); if(checkChar == ' ') //v - vert position { float vz, vy, vx; fileIn >> vx >> vy >> vz; //Store the next three types if(isRHCoordSys) //If model is from an RH Coord System vertPos.push_back(XMFLOAT3( vx, vy, vz * -1.0f)); //Invert the Z axis else vertPos.push_back(XMFLOAT3( vx, vy, vz)); } if(checkChar == 't') //vt - vert tex coords { float vtcu, vtcv; fileIn >> vtcu >> vtcv; //Store next two types if(isRHCoordSys) //If model is from an RH Coord System vertTexCoord.push_back(XMFLOAT2(vtcu, 1.0f-vtcv)); //Reverse the "v" axis else vertTexCoord.push_back(XMFLOAT2(vtcu, vtcv)); hasTexCoord = true; //We know the model uses texture coords } //Since we compute the normals later, we don't need to check for normals //In the file, but i'll do it here anyway if(checkChar == 'n') //vn - vert normal { float vnx, vny, vnz; fileIn >> vnx >> vny >> vnz; //Store next three types if(isRHCoordSys) //If model is from an RH Coord System vertNorm.push_back(XMFLOAT3( vnx, vny, vnz * -1.0f )); //Invert the Z axis else vertNorm.push_back(XMFLOAT3( vnx, vny, vnz )); hasNorm = true; //We know the model defines normals } break; //New group (Subset) case 'g': //g - defines a group checkChar = fileIn.get(); if(checkChar == ' ') { subsetIndexStart.push_back(vIndex); //Start index for this subset subsetCount++; } break; //Get Face Index case 'f': //f - defines the faces checkChar = fileIn.get(); if(checkChar == ' ') { face = L""; std::wstring VertDef; //Holds one vertex definition at a time triangleCount = 0; checkChar = fileIn.get(); while(checkChar != '\n') { face += checkChar; //Add the char to our face string checkChar = fileIn.get(); //Get the next Character if(checkChar == ' ') //If its a space... triangleCount++; //Increase our triangle count } //Check for space at the end of our face string if(face[face.length()-1] == ' ') triangleCount--; //Each space adds to our triangle count triangleCount -= 1; //Ever vertex in the face AFTER the first two are new faces std::wstringstream ss(face); if(face.length() > 0) { int firstVIndex, lastVIndex; //Holds the first and last vertice's index for(int i = 0; i < 3; ++i) //First three vertices (first triangle) { ss >> VertDef; //Get vertex definition (vPos/vTexCoord/vNorm) std::wstring vertPart; int whichPart = 0; //(vPos, vTexCoord, or vNorm) //Parse this string for(int j = 0; j < VertDef.length(); ++j) { if(VertDef[j] != '/') //If there is no divider "/", add a char to our vertPart vertPart += VertDef[j]; //If the current char is a divider "/", or its the last character in the string if(VertDef[j] == '/' || j == VertDef.length()-1) { std::wistringstream wstringToInt(vertPart); //Used to convert wstring to int if(whichPart == 0) //If vPos { wstringToInt >> vertPosIndexTemp; vertPosIndexTemp -= 1; //subtract one since c++ arrays start with 0, and obj start with 1 //Check to see if the vert pos was the only thing specified if(j == VertDef.length()-1) { vertNormIndexTemp = 0; vertTCIndexTemp = 0; } } else if(whichPart == 1) //If vTexCoord { if(vertPart != L"") //Check to see if there even is a tex coord { wstringToInt >> vertTCIndexTemp; vertTCIndexTemp -= 1; //subtract one since c++ arrays start with 0, and obj start with 1 } else //If there is no tex coord, make a default vertTCIndexTemp = 0; //If the cur. char is the second to last in the string, then //there must be no normal, so set a default normal if(j == VertDef.length()-1) vertNormIndexTemp = 0; } else if(whichPart == 2) //If vNorm { std::wistringstream wstringToInt(vertPart); wstringToInt >> vertNormIndexTemp; vertNormIndexTemp -= 1; //subtract one since c++ arrays start with 0, and obj start with 1 } vertPart = L""; //Get ready for next vertex part whichPart++; //Move on to next vertex part } } //Check to make sure there is at least one subset if(subsetCount == 0) { subsetIndexStart.push_back(vIndex); //Start index for this subset subsetCount++; } //Avoid duplicate vertices bool vertAlreadyExists = false; if(totalVerts >= 3) //Make sure we at least have one triangle to check { //Loop through all the vertices for(int iCheck = 0; iCheck < totalVerts; ++iCheck) { //If the vertex position and texture coordinate in memory are the same //As the vertex position and texture coordinate we just now got out //of the obj file, we will set this faces vertex index to the vertex's //index value in memory. This makes sure we don't create duplicate vertices if(vertPosIndexTemp == vertPosIndex[iCheck] && !vertAlreadyExists) { if(vertTCIndexTemp == vertTCIndex[iCheck]) { indices.push_back(iCheck); //Set index for this vertex vertAlreadyExists = true; //If we've made it here, the vertex already exists } } } } //If this vertex is not already in our vertex arrays, put it there if(!vertAlreadyExists) { vertPosIndex.push_back(vertPosIndexTemp); vertTCIndex.push_back(vertTCIndexTemp); vertNormIndex.push_back(vertNormIndexTemp); totalVerts++; //We created a new vertex indices.push_back(totalVerts-1); //Set index for this vertex } //If this is the very first vertex in the face, we need to //make sure the rest of the triangles use this vertex if(i == 0) { firstVIndex = indices[vIndex]; //The first vertex index of this FACE } //If this was the last vertex in the first triangle, we will make sure //the next triangle uses this one (eg. tri1(1,2,3) tri2(1,3,4) tri3(1,4,5)) if(i == 2) { lastVIndex = indices[vIndex]; //The last vertex index of this TRIANGLE } vIndex++; //Increment index count } meshTriangles++; //One triangle down //If there are more than three vertices in the face definition, we need to make sure //we convert the face to triangles. We created our first triangle above, now we will //create a new triangle for every new vertex in the face, using the very first vertex //of the face, and the last vertex from the triangle before the current triangle for(int l = 0; l < triangleCount-1; ++l) //Loop through the next vertices to create new triangles { //First vertex of this triangle (the very first vertex of the face too) indices.push_back(firstVIndex); //Set index for this vertex vIndex++; //Second Vertex of this triangle (the last vertex used in the tri before this one) indices.push_back(lastVIndex); //Set index for this vertex vIndex++; //Get the third vertex for this triangle ss >> VertDef; std::wstring vertPart; int whichPart = 0; //Parse this string (same as above) for(int j = 0; j < VertDef.length(); ++j) { if(VertDef[j] != '/') vertPart += VertDef[j]; if(VertDef[j] == '/' || j == VertDef.length()-1) { std::wistringstream wstringToInt(vertPart); if(whichPart == 0) { wstringToInt >> vertPosIndexTemp; vertPosIndexTemp -= 1; //Check to see if the vert pos was the only thing specified if(j == VertDef.length()-1) { vertTCIndexTemp = 0; vertNormIndexTemp = 0; } } else if(whichPart == 1) { if(vertPart != L"") { wstringToInt >> vertTCIndexTemp; vertTCIndexTemp -= 1; } else vertTCIndexTemp = 0; if(j == VertDef.length()-1) vertNormIndexTemp = 0; } else if(whichPart == 2) { std::wistringstream wstringToInt(vertPart); wstringToInt >> vertNormIndexTemp; vertNormIndexTemp -= 1; } vertPart = L""; whichPart++; } } //Check for duplicate vertices bool vertAlreadyExists = false; if(totalVerts >= 3) //Make sure we at least have one triangle to check { for(int iCheck = 0; iCheck < totalVerts; ++iCheck) { if(vertPosIndexTemp == vertPosIndex[iCheck] && !vertAlreadyExists) { if(vertTCIndexTemp == vertTCIndex[iCheck]) { indices.push_back(iCheck); //Set index for this vertex vertAlreadyExists = true; //If we've made it here, the vertex already exists } } } } if(!vertAlreadyExists) { vertPosIndex.push_back(vertPosIndexTemp); vertTCIndex.push_back(vertTCIndexTemp); vertNormIndex.push_back(vertNormIndexTemp); totalVerts++; //New vertex created, add to total verts indices.push_back(totalVerts-1); //Set index for this vertex } //Set the second vertex for the next triangle to the last vertex we got lastVIndex = indices[vIndex]; //The last vertex index of this TRIANGLE meshTriangles++; //New triangle defined vIndex++; } } } break; case 'm': //mtllib - material library filename checkChar = fileIn.get(); if(checkChar == 't') { checkChar = fileIn.get(); if(checkChar == 'l') { checkChar = fileIn.get(); if(checkChar == 'l') { checkChar = fileIn.get(); if(checkChar == 'i') { checkChar = fileIn.get(); if(checkChar == 'b') { checkChar = fileIn.get(); if(checkChar == ' ') { //Store the material libraries file name fileIn >> meshMatLib; } } } } } } break; case 'u': //usemtl - which material to use checkChar = fileIn.get(); if(checkChar == 's') { checkChar = fileIn.get(); if(checkChar == 'e') { checkChar = fileIn.get(); if(checkChar == 'm') { checkChar = fileIn.get(); if(checkChar == 't') { checkChar = fileIn.get(); if(checkChar == 'l') { checkChar = fileIn.get(); if(checkChar == ' ') { meshMaterialsTemp = L""; //Make sure this is cleared fileIn >> meshMaterialsTemp; //Get next type (string) meshMaterials.push_back(meshMaterialsTemp); } } } } } } break; default: break; } } } else //If we could not open the file { SwapChain->SetFullscreenState(false, NULL); //Make sure we are out of fullscreen //create message std::wstring message = L"Could not open: "; message += filename; MessageBox(0, message.c_str(), //display message L"Error", MB_OK); return false; } subsetIndexStart.push_back(vIndex); //There won't be another index start after our last subset, so set it here //sometimes "g" is defined at the very top of the file, then again before the first group of faces. //This makes sure the first subset does not conatain "0" indices. if(subsetIndexStart[1] == 0) { subsetIndexStart.erase(subsetIndexStart.begin()+1); meshSubsets--; } //Make sure we have a default for the tex coord and normal //if one or both are not specified if(!hasNorm) vertNorm.push_back(XMFLOAT3(0.0f, 0.0f, 0.0f)); if(!hasTexCoord) vertTexCoord.push_back(XMFLOAT2(0.0f, 0.0f)); //Close the obj file, and open the mtl file fileIn.close(); fileIn.open(meshMatLib.c_str()); std::wstring lastStringRead; int matCount = material.size(); //total materials //kdset - If our diffuse color was not set, we can use the ambient color (which is usually the same) //If the diffuse color WAS set, then we don't need to set our diffuse color to ambient bool kdset = false; if (fileIn) { while(fileIn) { checkChar = fileIn.get(); //Get next char switch (checkChar) { //Check for comment case '#': checkChar = fileIn.get(); while(checkChar != '\n') checkChar = fileIn.get(); break; //Set diffuse color case 'K': checkChar = fileIn.get(); if(checkChar == 'd') //Diffuse Color { checkChar = fileIn.get(); //remove space fileIn >> material[matCount-1].difColor.x; fileIn >> material[matCount-1].difColor.y; fileIn >> material[matCount-1].difColor.z; kdset = true; } //Ambient Color (We'll store it in diffuse if there isn't a diffuse already) if(checkChar == 'a') { checkChar = fileIn.get(); //remove space if(!kdset) { fileIn >> material[matCount-1].difColor.x; fileIn >> material[matCount-1].difColor.y; fileIn >> material[matCount-1].difColor.z; } } break; //Check for transparency case 'T': checkChar = fileIn.get(); if(checkChar == 'r') { checkChar = fileIn.get(); //remove space float Transparency; fileIn >> Transparency; material[matCount-1].difColor.w = Transparency; if(Transparency > 0.0f) material[matCount-1].transparent = true; } break; //Some obj files specify d for transparency case 'd': checkChar = fileIn.get(); if(checkChar == ' ') { float Transparency; fileIn >> Transparency; //'d' - 0 being most transparent, and 1 being opaque, opposite of Tr Transparency = 1.0f - Transparency; material[matCount-1].difColor.w = Transparency; if(Transparency > 0.0f) material[matCount-1].transparent = true; } break; //Get the diffuse map (texture) case 'm': checkChar = fileIn.get(); if(checkChar == 'a') { checkChar = fileIn.get(); if(checkChar == 'p') { checkChar = fileIn.get(); if(checkChar == '_') { //map_Kd - Diffuse map checkChar = fileIn.get(); if(checkChar == 'K') { checkChar = fileIn.get(); if(checkChar == 'd') { std::wstring fileNamePath; fileIn.get(); //Remove whitespace between map_Kd and file //Get the file path - We read the pathname char by char since //pathnames can sometimes contain spaces, so we will read until //we find the file extension bool texFilePathEnd = false; while(!texFilePathEnd) { checkChar = fileIn.get(); fileNamePath += checkChar; if(checkChar == '.') { for(int i = 0; i < 3; ++i) fileNamePath += fileIn.get(); texFilePathEnd = true; } } //check if this texture has already been loaded bool alreadyLoaded = false; for(int i = 0; i < textureNameArray.size(); ++i) { if(fileNamePath == textureNameArray[i]) { alreadyLoaded = true; material[matCount-1].texArrayIndex = i; material[matCount-1].hasTexture = true; } } //if the texture is not already loaded, load it now if(!alreadyLoaded) { ID3D11ShaderResourceView* tempMeshSRV; hr = D3DX11CreateShaderResourceViewFromFile( d3d11Device, fileNamePath.c_str(), NULL, NULL, &tempMeshSRV, NULL ); if(SUCCEEDED(hr)) { textureNameArray.push_back(fileNamePath.c_str()); material[matCount-1].texArrayIndex = meshSRV.size(); meshSRV.push_back(tempMeshSRV); material[matCount-1].hasTexture = true; } } } } //map_d - alpha map else if(checkChar == 'd') { //Alpha maps are usually the same as the diffuse map //So we will assume that for now by only enabling //transparency for this material, as we will already //be using the alpha channel in the diffuse map material[matCount-1].transparent = true; } //map_bump - bump map (we're usinga normal map though) else if(checkChar == 'b') { checkChar = fileIn.get(); if(checkChar == 'u') { checkChar = fileIn.get(); if(checkChar == 'm') { checkChar = fileIn.get(); if(checkChar == 'p') { std::wstring fileNamePath; fileIn.get(); //Remove whitespace between map_bump and file //Get the file path - We read the pathname char by char since //pathnames can sometimes contain spaces, so we will read until //we find the file extension bool texFilePathEnd = false; while(!texFilePathEnd) { checkChar = fileIn.get(); fileNamePath += checkChar; if(checkChar == '.') { for(int i = 0; i < 3; ++i) fileNamePath += fileIn.get(); texFilePathEnd = true; } } //check if this texture has already been loaded bool alreadyLoaded = false; for(int i = 0; i < textureNameArray.size(); ++i) { if(fileNamePath == textureNameArray[i]) { alreadyLoaded = true; material[matCount-1].normMapTexArrayIndex = i; material[matCount-1].hasNormMap = true; } } //if the texture is not already loaded, load it now if(!alreadyLoaded) { ID3D11ShaderResourceView* tempMeshSRV; hr = D3DX11CreateShaderResourceViewFromFile( d3d11Device, fileNamePath.c_str(), NULL, NULL, &tempMeshSRV, NULL ); if(SUCCEEDED(hr)) { textureNameArray.push_back(fileNamePath.c_str()); material[matCount-1].normMapTexArrayIndex = meshSRV.size(); meshSRV.push_back(tempMeshSRV); material[matCount-1].hasNormMap = true; } } } } } } } } } break; case 'n': //newmtl - Declare new material checkChar = fileIn.get(); if(checkChar == 'e') { checkChar = fileIn.get(); if(checkChar == 'w') { checkChar = fileIn.get(); if(checkChar == 'm') { checkChar = fileIn.get(); if(checkChar == 't') { checkChar = fileIn.get(); if(checkChar == 'l') { checkChar = fileIn.get(); if(checkChar == ' ') { //New material, set its defaults SurfaceMaterial tempMat; material.push_back(tempMat); fileIn >> material[matCount].matName; material[matCount].transparent = false; material[matCount].hasTexture = false; material[matCount].hasNormMap = false; material[matCount].normMapTexArrayIndex = 0; material[matCount].texArrayIndex = 0; matCount++; kdset = false; } } } } } } break; default: break; } } } else { SwapChain->SetFullscreenState(false, NULL); //Make sure we are out of fullscreen std::wstring message = L"Could not open: "; message += meshMatLib; MessageBox(0, message.c_str(), L"Error", MB_OK); return false; } //Set the subsets material to the index value //of the its material in our material array for(int i = 0; i < meshSubsets; ++i) { bool hasMat = false; for(int j = 0; j < material.size(); ++j) { if(meshMaterials[i] == material[j].matName) { subsetMaterialArray.push_back(j); hasMat = true; } } if(!hasMat) subsetMaterialArray.push_back(0); //Use first material in array } std::vector<Vertex> vertices; Vertex tempVert; //Create our vertices using the information we got //from the file and store them in a vector for(int j = 0 ; j < totalVerts; ++j) { tempVert.pos = vertPos[vertPosIndex[j]]; tempVert.normal = vertNorm[vertNormIndex[j]]; tempVert.texCoord = vertTexCoord[vertTCIndex[j]]; vertices.push_back(tempVert); } //////////////////////Compute Normals/////////////////////////// //If computeNormals was set to true then we will create our own //normals, if it was set to false we will use the obj files normals if(computeNormals) { std::vector<XMFLOAT3> tempNormal; //normalized and unnormalized normals XMFLOAT3 unnormalized = XMFLOAT3(0.0f, 0.0f, 0.0f); //tangent stuff std::vector<XMFLOAT3> tempTangent; XMFLOAT3 tangent = XMFLOAT3(0.0f, 0.0f, 0.0f); float tcU1, tcV1, tcU2, tcV2; //Used to get vectors (sides) from the position of the verts float vecX, vecY, vecZ; //Two edges of our triangle XMVECTOR edge1 = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); XMVECTOR edge2 = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); //Compute face normals //And Tangents for(int i = 0; i < meshTriangles; ++i) { //Get the vector describing one edge of our triangle (edge 0,2) vecX = vertices[indices[(i*3)]].pos.x - vertices[indices[(i*3)+2]].pos.x; vecY = vertices[indices[(i*3)]].pos.y - vertices[indices[(i*3)+2]].pos.y; vecZ = vertices[indices[(i*3)]].pos.z - vertices[indices[(i*3)+2]].pos.z; edge1 = XMVectorSet(vecX, vecY, vecZ, 0.0f); //Create our first edge //Get the vector describing another edge of our triangle (edge 2,1) vecX = vertices[indices[(i*3)+2]].pos.x - vertices[indices[(i*3)+1]].pos.x; vecY = vertices[indices[(i*3)+2]].pos.y - vertices[indices[(i*3)+1]].pos.y; vecZ = vertices[indices[(i*3)+2]].pos.z - vertices[indices[(i*3)+1]].pos.z; edge2 = XMVectorSet(vecX, vecY, vecZ, 0.0f); //Create our second edge //Cross multiply the two edge vectors to get the un-normalized face normal XMStoreFloat3(&unnormalized, XMVector3Cross(edge1, edge2)); tempNormal.push_back(unnormalized); //Find first texture coordinate edge 2d vector tcU1 = vertices[indices[(i*3)]].texCoord.x - vertices[indices[(i*3)+2]].texCoord.x; tcV1 = vertices[indices[(i*3)]].texCoord.y - vertices[indices[(i*3)+2]].texCoord.y; //Find second texture coordinate edge 2d vector tcU2 = vertices[indices[(i*3)+2]].texCoord.x - vertices[indices[(i*3)+1]].texCoord.x; tcV2 = vertices[indices[(i*3)+2]].texCoord.y - vertices[indices[(i*3)+1]].texCoord.y; //Find tangent using both tex coord edges and position edges tangent.x = (tcV1 * XMVectorGetX(edge1) - tcV2 * XMVectorGetX(edge2)) * (1.0f / (tcU1 * tcV2 - tcU2 * tcV1)); tangent.y = (tcV1 * XMVectorGetY(edge1) - tcV2 * XMVectorGetY(edge2)) * (1.0f / (tcU1 * tcV2 - tcU2 * tcV1)); tangent.z = (tcV1 * XMVectorGetZ(edge1) - tcV2 * XMVectorGetZ(edge2)) * (1.0f / (tcU1 * tcV2 - tcU2 * tcV1)); tempTangent.push_back(tangent); } //Compute vertex normals (normal Averaging) XMVECTOR normalSum = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); XMVECTOR tangentSum = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); int facesUsing = 0; float tX, tY, tZ; //temp axis variables //Go through each vertex for(int i = 0; i < totalVerts; ++i) { //Check which triangles use this vertex for(int j = 0; j < meshTriangles; ++j) { if(indices[j*3] == i || indices[(j*3)+1] == i || indices[(j*3)+2] == i) { tX = XMVectorGetX(normalSum) + tempNormal[j].x; tY = XMVectorGetY(normalSum) + tempNormal[j].y; tZ = XMVectorGetZ(normalSum) + tempNormal[j].z; normalSum = XMVectorSet(tX, tY, tZ, 0.0f); //If a face is using the vertex, add the unormalized face normal to the normalSum //We can reuse tX, tY, tZ to sum up tangents tX = XMVectorGetX(tangentSum) + tempTangent[j].x; tY = XMVectorGetY(tangentSum) + tempTangent[j].y; tZ = XMVectorGetZ(tangentSum) + tempTangent[j].z; tangentSum = XMVectorSet(tX, tY, tZ, 0.0f); //sum up face tangents using this vertex facesUsing++; } } //Get the actual normal by dividing the normalSum by the number of faces sharing the vertex normalSum = normalSum / facesUsing; tangentSum = tangentSum / facesUsing; //Normalize the normalSum vector and tangent normalSum = XMVector3Normalize(normalSum); tangentSum = XMVector3Normalize(tangentSum); //Store the normal and tangent in our current vertex vertices[i].normal.x = XMVectorGetX(normalSum); vertices[i].normal.y = XMVectorGetY(normalSum); vertices[i].normal.z = XMVectorGetZ(normalSum); vertices[i].tangent.x = XMVectorGetX(tangentSum); vertices[i].tangent.y = XMVectorGetY(tangentSum); vertices[i].tangent.z = XMVectorGetZ(tangentSum); //Clear normalSum, tangentSum and facesUsing for next vertex normalSum = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); tangentSum = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); facesUsing = 0; } } //Create index buffer D3D11_BUFFER_DESC indexBufferDesc; ZeroMemory( &indexBufferDesc, sizeof(indexBufferDesc) ); indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(DWORD) * meshTriangles*3; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = &indices[0]; d3d11Device->CreateBuffer(&indexBufferDesc, &iinitData, indexBuff); //Create Vertex Buffer D3D11_BUFFER_DESC vertexBufferDesc; ZeroMemory( &vertexBufferDesc, sizeof(vertexBufferDesc) ); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.ByteWidth = sizeof( Vertex ) * totalVerts; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; ZeroMemory( &vertexBufferData, sizeof(vertexBufferData) ); vertexBufferData.pSysMem = &vertices[0]; hr = d3d11Device->CreateBuffer( &vertexBufferDesc, &vertexBufferData, vertBuff); return true; } void CreateSphere(int LatLines, int LongLines) { NumSphereVertices = ((LatLines-2) * LongLines) + 2; NumSphereFaces = ((LatLines-3)*(LongLines)*2) + (LongLines*2); float sphereYaw = 0.0f; float spherePitch = 0.0f; std::vector<Vertex> vertices(NumSphereVertices); XMVECTOR currVertPos = XMVectorSet(0.0f, 0.0f, 1.0f, 0.0f); vertices[0].pos.x = 0.0f; vertices[0].pos.y = 0.0f; vertices[0].pos.z = 1.0f; for(DWORD i = 0; i < LatLines-2; ++i) { spherePitch = (i+1) * (3.14f/(LatLines-1)); Rotationx = XMMatrixRotationX(spherePitch); for(DWORD j = 0; j < LongLines; ++j) { sphereYaw = j * (6.28f/(LongLines)); Rotationy = XMMatrixRotationZ(sphereYaw); currVertPos = XMVector3TransformNormal( XMVectorSet(0.0f, 0.0f, 1.0f, 0.0f), (Rotationx * Rotationy) ); currVertPos = XMVector3Normalize( currVertPos ); vertices[i*LongLines+j+1].pos.x = XMVectorGetX(currVertPos); vertices[i*LongLines+j+1].pos.y = XMVectorGetY(currVertPos); vertices[i*LongLines+j+1].pos.z = XMVectorGetZ(currVertPos); } } vertices[NumSphereVertices-1].pos.x = 0.0f; vertices[NumSphereVertices-1].pos.y = 0.0f; vertices[NumSphereVertices-1].pos.z = -1.0f; D3D11_BUFFER_DESC vertexBufferDesc; ZeroMemory( &vertexBufferDesc, sizeof(vertexBufferDesc) ); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.ByteWidth = sizeof( Vertex ) * NumSphereVertices; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; ZeroMemory( &vertexBufferData, sizeof(vertexBufferData) ); vertexBufferData.pSysMem = &vertices[0]; hr = d3d11Device->CreateBuffer( &vertexBufferDesc, &vertexBufferData, &sphereVertBuffer); std::vector<DWORD> indices(NumSphereFaces * 3); int k = 0; for(DWORD l = 0; l < LongLines-1; ++l) { indices[k] = 0; indices[k+1] = l+1; indices[k+2] = l+2; k += 3; } indices[k] = 0; indices[k+1] = LongLines; indices[k+2] = 1; k += 3; for(DWORD i = 0; i < LatLines-3; ++i) { for(DWORD j = 0; j < LongLines-1; ++j) { indices[k] = i*LongLines+j+1; indices[k+1] = i*LongLines+j+2; indices[k+2] = (i+1)*LongLines+j+1; indices[k+3] = (i+1)*LongLines+j+1; indices[k+4] = i*LongLines+j+2; indices[k+5] = (i+1)*LongLines+j+2; k += 6; // next quad } indices[k] = (i*LongLines)+LongLines; indices[k+1] = (i*LongLines)+1; indices[k+2] = ((i+1)*LongLines)+LongLines; indices[k+3] = ((i+1)*LongLines)+LongLines; indices[k+4] = (i*LongLines)+1; indices[k+5] = ((i+1)*LongLines)+1; k += 6; } for(DWORD l = 0; l < LongLines-1; ++l) { indices[k] = NumSphereVertices-1; indices[k+1] = (NumSphereVertices-1)-(l+1); indices[k+2] = (NumSphereVertices-1)-(l+2); k += 3; } indices[k] = NumSphereVertices-1; indices[k+1] = (NumSphereVertices-1)-LongLines; indices[k+2] = NumSphereVertices-2; D3D11_BUFFER_DESC indexBufferDesc; ZeroMemory( &indexBufferDesc, sizeof(indexBufferDesc) ); indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(DWORD) * NumSphereFaces * 3; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = &indices[0]; d3d11Device->CreateBuffer(&indexBufferDesc, &iinitData, &sphereIndexBuffer); } void InitD2DScreenTexture() { //Create the vertex buffer Vertex v[] = { // Front Face Vertex(-1.0f, -1.0f, -1.0f, 0.0f, 1.0f,-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex(-1.0f, 1.0f, -1.0f, 0.0f, 0.0f,-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex( 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex( 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f), }; DWORD indices[] = { // Front Face 0, 1, 2, 0, 2, 3, }; D3D11_BUFFER_DESC indexBufferDesc; ZeroMemory( &indexBufferDesc, sizeof(indexBufferDesc) ); indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(DWORD) * 2 * 3; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = indices; d3d11Device->CreateBuffer(&indexBufferDesc, &iinitData, &d2dIndexBuffer); D3D11_BUFFER_DESC vertexBufferDesc; ZeroMemory( &vertexBufferDesc, sizeof(vertexBufferDesc) ); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.ByteWidth = sizeof( Vertex ) * 4; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; ZeroMemory( &vertexBufferData, sizeof(vertexBufferData) ); vertexBufferData.pSysMem = v; hr = d3d11Device->CreateBuffer( &vertexBufferDesc, &vertexBufferData, &d2dVertBuffer); //Create A shader resource view from the texture D2D will render to, //So we can use it to texture a square which overlays our scene d3d11Device->CreateShaderResourceView(sharedTex11, NULL, &d2dTexture); } bool InitScene() { InitD2DScreenTexture(); CreateSphere(10, 10); if(!LoadObjModel(L"ground.obj", &meshVertBuff, &meshIndexBuff, meshSubsetIndexStart, meshSubsetTexture, material, meshSubsets, true, true)) return false; /************************************New Stuff****************************************************/ // Load in our tree model if(!LoadObjModel(L"tree.obj", &treeVertBuff, &treeIndexBuff, treeSubsetIndexStart, treeSubsetTexture, material, treeSubsets, true, true)) return false; // Set up the tree positions then instance buffer std::vector<InstanceData> inst(numTrees); XMVECTOR tempPos; srand(100); // We are just creating random positions for the trees, between the positions of (-100, 0, -100) to (100, 0, 100) // then storing the position in our instanceData array for(int i = 0; i < numTrees; i++) { float randX = ((float)(rand() % 2000) / 10) - 100; float randZ = ((float)(rand() % 2000) / 10) - 100; tempPos = XMVectorSet(randX, 0.0f, randZ, 0.0f); XMStoreFloat3(&inst[i].pos, tempPos); } // Create our trees instance buffer // Pretty much the same thing as a regular vertex buffer, except that this buffers data // will be used per "instance" instead of per "vertex". Each instance of the geometry // gets it's own instanceData data, similar to how each vertex of the geometry gets its own // Vertex data D3D11_BUFFER_DESC instBuffDesc; ZeroMemory( &instBuffDesc, sizeof(instBuffDesc) ); instBuffDesc.Usage = D3D11_USAGE_DEFAULT; instBuffDesc.ByteWidth = sizeof( InstanceData ) * numTrees; instBuffDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; instBuffDesc.CPUAccessFlags = 0; instBuffDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA instData; ZeroMemory( &instData, sizeof(instData) ); instData.pSysMem = &inst[0]; hr = d3d11Device->CreateBuffer( &instBuffDesc, &instData, &treeInstanceBuff); // The tree's world matrix (We will keep it an identity matrix, but we could change their positions without // unrealistic effects, since remember that all transformations are done around the point (0,0,0), and we will // be applying this world matrix to our trees AFTER they have been individually positioned depending on the // instance buffer, which means they will not be centered at the point (0,0,0)) treeWorld = XMMatrixIdentity(); /*************************************************************************************************/ if(!LoadMD5Model(L"Female.md5mesh", NewMD5Model, meshSRV, textureNameArray)) return false; if(!LoadMD5Anim(L"Female.md5anim", NewMD5Model)) return false; /************************************New Stuff****************************************************/ // Create Leaf geometry (quad) Vertex v[] = { // Front Face Vertex(-1.0f, -1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex(-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex( 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex( 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f), }; DWORD indices[] = { // Front Face 0, 1, 2, 0, 2, 3, }; D3D11_BUFFER_DESC indexBufferDesc; ZeroMemory( &indexBufferDesc, sizeof(indexBufferDesc) ); indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(DWORD) * 2 * 3; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = indices; d3d11Device->CreateBuffer(&indexBufferDesc, &iinitData, &quadIndexBuffer); D3D11_BUFFER_DESC vertexBufferDesc; ZeroMemory( &vertexBufferDesc, sizeof(vertexBufferDesc) ); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.ByteWidth = sizeof( Vertex ) * 4; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; ZeroMemory( &vertexBufferData, sizeof(vertexBufferData) ); vertexBufferData.pSysMem = v; hr = d3d11Device->CreateBuffer( &vertexBufferDesc, &vertexBufferData, &quadVertBuffer); // Now we load in the leaf texture hr = D3DX11CreateShaderResourceViewFromFile( d3d11Device, L"leaf.png", NULL, NULL, &leafTexture, NULL ); // Here we create the leaf world matrices, that will be the leafs // position and orientation on the tree each individual tree. We will create an array of matrices // for the leaves that we will send to the shaders in the cbPerInstance constant buffer // This matrix array is used "per tree", so that each tree gets the exact same number of leaves, // with the same orientation, position, and scale as all of the other trees // Start by initializing the matrix array srand(100); XMFLOAT3 fTPos; XMMATRIX rotationMatrix; XMMATRIX tempMatrix; for(int i = 0; i < numLeavesPerTree; i++) { float rotX =(rand() % 2000) / 500.0f; // Value between 0 and 4 PI (two circles, makes it slightly more mixed) float rotY = (rand() % 2000) / 500.0f; float rotZ = (rand() % 2000) / 500.0f; // the rand() function is slightly more biased towards lower numbers, which would make the center of // the leaf "mass" be more dense with leaves than the outside of the "sphere" of leaves we are making. // We want the outside of the "sphere" of leaves to be more dense than the inside, so the way we do this // is getting a distance value between 0 and 4, we then subtract that value from 6, so that the very center // does not have any leaves. then below you can see we are checking to see if the distance is greater than 4 // (because the tree branches are approximately 4 units radius from the center of the tree). If the distance // is greater than 4, then we set it at 4, which will make the edge of the "sphere" of leaves more densly // populated than the center of the leaf mass float distFromCenter = 6.0f - ((rand() % 1000) / 250.0f); if(distFromCenter > 4.0f) distFromCenter = 4.0f; // Now we create a vector with the length of distFromCenter, by simply setting it's x component as distFromCenter. // We will now rotate the vector, which will give us the "sphere" of leaves after we have rotated all the leaves. // We do not want a perfect sphere, more like a half sphere to cover the branches, so we check to see if the y // value is less than -1.0f (giving us slightly more than half a sphere), and if it is, negate it so it is reflected // across the xz plane tempPos = XMVectorSet(distFromCenter, 0.0f, 0.0f, 0.0f); rotationMatrix = XMMatrixRotationRollPitchYaw(rotX, rotY, rotZ); tempPos = XMVector3TransformCoord(tempPos, rotationMatrix ); if(XMVectorGetY(tempPos) < -1.0f) tempPos = XMVectorSetY(tempPos, -XMVectorGetY(tempPos)); // Now we create our leaves "tree" matrix (this is not the leaves "world matrix", because we are not // defining the leaves position, orientation, and scale in world space, but instead in "tree" space XMStoreFloat3(&fTPos, tempPos); Scale = XMMatrixScaling( 0.25f, 0.25f, 0.25f ); Translation = XMMatrixTranslation(fTPos.x, fTPos.y + 8.0f, fTPos.z ); tempMatrix = Scale * rotationMatrix * Translation; // To make things simple, we just store the matrix directly into our cbPerInst structure cbPerInst.leafOnTree[i] = XMMatrixTranspose(tempMatrix); } /*************************************************************************************************/ //Compile Shaders from shader file hr = D3DX11CompileFromFile(L"Effects.fx", 0, 0, "VS", "vs_4_0", 0, 0, 0, &VS_Buffer, 0, 0); hr = D3DX11CompileFromFile(L"Effects.fx", 0, 0, "PS", "ps_4_0", 0, 0, 0, &PS_Buffer, 0, 0); hr = D3DX11CompileFromFile(L"Effects.fx", 0, 0, "D2D_PS", "ps_4_0", 0, 0, 0, &D2D_PS_Buffer, 0, 0); hr = D3DX11CompileFromFile(L"Effects.fx", 0, 0, "SKYMAP_VS", "vs_4_0", 0, 0, 0, &SKYMAP_VS_Buffer, 0, 0); hr = D3DX11CompileFromFile(L"Effects.fx", 0, 0, "SKYMAP_PS", "ps_4_0", 0, 0, 0, &SKYMAP_PS_Buffer, 0, 0); //Create the Shader Objects hr = d3d11Device->CreateVertexShader(VS_Buffer->GetBufferPointer(), VS_Buffer->GetBufferSize(), NULL, &VS); hr = d3d11Device->CreatePixelShader(PS_Buffer->GetBufferPointer(), PS_Buffer->GetBufferSize(), NULL, &PS); hr = d3d11Device->CreatePixelShader(D2D_PS_Buffer->GetBufferPointer(), D2D_PS_Buffer->GetBufferSize(), NULL, &D2D_PS); hr = d3d11Device->CreateVertexShader(SKYMAP_VS_Buffer->GetBufferPointer(), SKYMAP_VS_Buffer->GetBufferSize(), NULL, &SKYMAP_VS); hr = d3d11Device->CreatePixelShader(SKYMAP_PS_Buffer->GetBufferPointer(), SKYMAP_PS_Buffer->GetBufferSize(), NULL, &SKYMAP_PS); //Set Vertex and Pixel Shaders d3d11DevCon->VSSetShader(VS, 0, 0); d3d11DevCon->PSSetShader(PS, 0, 0); light.pos = XMFLOAT3(0.0f, 7.0f, 0.0f); light.dir = XMFLOAT3(-0.5f, 0.75f, -0.5f); light.range = 1000.0f; light.cone = 12.0f; light.att = XMFLOAT3(0.4f, 0.02f, 0.000f); light.ambient = XMFLOAT4(0.2f, 0.2f, 0.2f, 1.0f); light.diffuse = XMFLOAT4(1.0f, 1.0f, 1.0f, 1.0f); //Create the Input Layout hr = d3d11Device->CreateInputLayout( layout, numElements, VS_Buffer->GetBufferPointer(), VS_Buffer->GetBufferSize(), &vertLayout ); /************************************New Stuff****************************************************/ // Create the leaf Input Layout. We create a second layout for the leaves because the instance // element used for the positions is different than the instance element used for the positions // when drawing the trees. We want to only move to the next element in the instance buffer // AFTER we have drawn ALL the leaves for the current tree hr = d3d11Device->CreateInputLayout( leafLayout, numLeafElements, VS_Buffer->GetBufferPointer(), VS_Buffer->GetBufferSize(), &leafVertLayout ); /*************************************************************************************************/ //Set the Input Layout d3d11DevCon->IASetInputLayout( vertLayout ); //Set Primitive Topology d3d11DevCon->IASetPrimitiveTopology( D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST ); //Create the Viewport D3D11_VIEWPORT viewport; ZeroMemory(&viewport, sizeof(D3D11_VIEWPORT)); viewport.TopLeftX = 0; viewport.TopLeftY = 0; viewport.Width = Width; viewport.Height = Height; viewport.MinDepth = 0.0f; viewport.MaxDepth = 1.0f; //Set the Viewport d3d11DevCon->RSSetViewports(1, &viewport); //Create the buffer to send to the cbuffer in effect file D3D11_BUFFER_DESC cbbd; ZeroMemory(&cbbd, sizeof(D3D11_BUFFER_DESC)); cbbd.Usage = D3D11_USAGE_DEFAULT; cbbd.ByteWidth = sizeof(cbPerObject); cbbd.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbbd.CPUAccessFlags = 0; cbbd.MiscFlags = 0; hr = d3d11Device->CreateBuffer(&cbbd, NULL, &cbPerObjectBuffer); //Create the buffer to send to the cbuffer per frame in effect file ZeroMemory(&cbbd, sizeof(D3D11_BUFFER_DESC)); cbbd.Usage = D3D11_USAGE_DEFAULT; cbbd.ByteWidth = sizeof(cbPerFrame); cbbd.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbbd.CPUAccessFlags = 0; cbbd.MiscFlags = 0; hr = d3d11Device->CreateBuffer(&cbbd, NULL, &cbPerFrameBuffer); /************************************New Stuff****************************************************/ //Create the buffer to send to the cbuffer per instance in effect file ZeroMemory(&cbbd, sizeof(D3D11_BUFFER_DESC)); cbbd.Usage = D3D11_USAGE_DEFAULT; // We have already defined how many elements are in our leaf matrix array inside the cbPerScene structure, // so we only need the size of the entire structure here, because the number of leaves per tree will not // change throughout the scene. cbbd.ByteWidth = sizeof(cbPerScene); cbbd.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbbd.CPUAccessFlags = 0; cbbd.MiscFlags = 0; hr = d3d11Device->CreateBuffer(&cbbd, NULL, &cbPerInstanceBuffer); // Now we set the constant buffer per instance (used only for the leaves in this lesson) // We are sending this buffer to the GPU now, because it will not be updated throughout the scene, // so it would be a waste of time to be sending this to the GPU every frame, when we only have to // send it once per scene. This is why constant buffers should be separated depending on how often // they are updated, so that you do not send data to the GPU more often than you have to. It's a // performance thing ;) d3d11DevCon->UpdateSubresource( cbPerInstanceBuffer, 0, NULL, &cbPerInst, 0, 0); /*************************************************************************************************/ Scale = XMMatrixScaling( 0.25f, 0.25f, 0.25f ); // The model is a bit too large for our scene, so make it smaller Translation = XMMatrixTranslation( 0.0f, 0.0f, 0.0f); playerCharWorld = Scale * Translation; //Camera information camPosition = XMVectorSet( 0.0f, 10.0f, 8.0f, 0.0f ); camTarget = XMVectorSet( 0.0f, 3.0f, 0.0f, 0.0f ); camUp = XMVectorSet( 0.0f, 1.0f, 0.0f, 0.0f ); //Set the View matrix camView = XMMatrixLookAtLH( camPosition, camTarget, camUp ); //Set the Projection matrix camProjection = XMMatrixPerspectiveFovLH( 3.14f/4.0f, (float)Width/Height, 1.0f, 1000.0f); D3D11_BLEND_DESC blendDesc; ZeroMemory( &blendDesc, sizeof(blendDesc) ); D3D11_RENDER_TARGET_BLEND_DESC rtbd; ZeroMemory( &rtbd, sizeof(rtbd) ); rtbd.BlendEnable = true; rtbd.SrcBlend = D3D11_BLEND_SRC_COLOR; rtbd.DestBlend = D3D11_BLEND_INV_SRC_ALPHA; rtbd.BlendOp = D3D11_BLEND_OP_ADD; rtbd.SrcBlendAlpha = D3D11_BLEND_ONE; rtbd.DestBlendAlpha = D3D11_BLEND_ZERO; rtbd.BlendOpAlpha = D3D11_BLEND_OP_ADD; rtbd.RenderTargetWriteMask = D3D10_COLOR_WRITE_ENABLE_ALL; blendDesc.AlphaToCoverageEnable = false; blendDesc.RenderTarget[0] = rtbd; d3d11Device->CreateBlendState(&blendDesc, &d2dTransparency); ZeroMemory( &rtbd, sizeof(rtbd) ); rtbd.BlendEnable = true; rtbd.SrcBlend = D3D11_BLEND_INV_SRC_ALPHA; rtbd.DestBlend = D3D11_BLEND_SRC_ALPHA; rtbd.BlendOp = D3D11_BLEND_OP_ADD; rtbd.SrcBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA; rtbd.DestBlendAlpha = D3D11_BLEND_SRC_ALPHA; rtbd.BlendOpAlpha = D3D11_BLEND_OP_ADD; rtbd.RenderTargetWriteMask = D3D10_COLOR_WRITE_ENABLE_ALL; blendDesc.AlphaToCoverageEnable = false; blendDesc.RenderTarget[0] = rtbd; d3d11Device->CreateBlendState(&blendDesc, &Transparency); ZeroMemory( &rtbd, sizeof(rtbd) ); rtbd.BlendEnable = true; rtbd.SrcBlend = D3D11_BLEND_INV_SRC_ALPHA; rtbd.DestBlend = D3D11_BLEND_SRC_ALPHA; rtbd.BlendOp = D3D11_BLEND_OP_ADD; rtbd.SrcBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA; rtbd.DestBlendAlpha = D3D11_BLEND_SRC_ALPHA; rtbd.BlendOpAlpha = D3D11_BLEND_OP_ADD; rtbd.RenderTargetWriteMask = D3D10_COLOR_WRITE_ENABLE_ALL; blendDesc.AlphaToCoverageEnable = true; blendDesc.RenderTarget[0] = rtbd; d3d11Device->CreateBlendState(&blendDesc, &leafTransparency); ///Load Skymap's cube texture/// D3DX11_IMAGE_LOAD_INFO loadSMInfo; loadSMInfo.MiscFlags = D3D11_RESOURCE_MISC_TEXTURECUBE; ID3D11Texture2D* SMTexture = 0; hr = D3DX11CreateTextureFromFile(d3d11Device, L"skymap.dds", &loadSMInfo, 0, (ID3D11Resource**)&SMTexture, 0); D3D11_TEXTURE2D_DESC SMTextureDesc; SMTexture->GetDesc(&SMTextureDesc); D3D11_SHADER_RESOURCE_VIEW_DESC SMViewDesc; SMViewDesc.Format = SMTextureDesc.Format; SMViewDesc.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE; SMViewDesc.TextureCube.MipLevels = SMTextureDesc.MipLevels; SMViewDesc.TextureCube.MostDetailedMip = 0; hr = d3d11Device->CreateShaderResourceView(SMTexture, &SMViewDesc, &smrv); // Describe the Sample State D3D11_SAMPLER_DESC sampDesc; ZeroMemory( &sampDesc, sizeof(sampDesc) ); sampDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR; sampDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP; sampDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP; sampDesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP; sampDesc.ComparisonFunc = D3D11_COMPARISON_NEVER; sampDesc.MinLOD = 0; sampDesc.MaxLOD = D3D11_FLOAT32_MAX; //Create the Sample State hr = d3d11Device->CreateSamplerState( &sampDesc, &CubesTexSamplerState ); D3D11_RASTERIZER_DESC cmdesc; ZeroMemory(&cmdesc, sizeof(D3D11_RASTERIZER_DESC)); cmdesc.FillMode = D3D11_FILL_SOLID; cmdesc.CullMode = D3D11_CULL_BACK; cmdesc.FrontCounterClockwise = true; hr = d3d11Device->CreateRasterizerState(&cmdesc, &CCWcullMode); cmdesc.FrontCounterClockwise = false; hr = d3d11Device->CreateRasterizerState(&cmdesc, &CWcullMode); cmdesc.CullMode = D3D11_CULL_NONE; //cmdesc.FillMode = D3D11_FILL_WIREFRAME; hr = d3d11Device->CreateRasterizerState(&cmdesc, &RSCullNone); D3D11_DEPTH_STENCIL_DESC dssDesc; ZeroMemory(&dssDesc, sizeof(D3D11_DEPTH_STENCIL_DESC)); dssDesc.DepthEnable = true; dssDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL; dssDesc.DepthFunc = D3D11_COMPARISON_LESS_EQUAL; d3d11Device->CreateDepthStencilState(&dssDesc, &DSLessEqual); return true; } void StartTimer() { LARGE_INTEGER frequencyCount; QueryPerformanceFrequency(&frequencyCount); countsPerSecond = double(frequencyCount.QuadPart); QueryPerformanceCounter(&frequencyCount); CounterStart = frequencyCount.QuadPart; } double GetTime() { LARGE_INTEGER currentTime; QueryPerformanceCounter(¤tTime); return double(currentTime.QuadPart-CounterStart)/countsPerSecond; } double GetFrameTime() { LARGE_INTEGER currentTime; __int64 tickCount; QueryPerformanceCounter(¤tTime); tickCount = currentTime.QuadPart-frameTimeOld; frameTimeOld = currentTime.QuadPart; if(tickCount < 0.0f) tickCount = 0.0f; return float(tickCount)/countsPerSecond; } void UpdateScene(double time) { //Reset sphereWorld sphereWorld = XMMatrixIdentity(); //Define sphereWorld's world space matrix Scale = XMMatrixScaling( 5.0f, 5.0f, 5.0f ); //Make sure the sphere is always centered around camera Translation = XMMatrixTranslation( XMVectorGetX(camPosition), XMVectorGetY(camPosition), XMVectorGetZ(camPosition) ); //Set sphereWorld's world space using the transformations sphereWorld = Scale * Translation; //the loaded models world space meshWorld = XMMatrixIdentity(); Rotation = XMMatrixRotationY(3.14f); Scale = XMMatrixScaling( 1.0f, 1.0f, 1.0f ); Translation = XMMatrixTranslation( 0.0f, 0.0f, 0.0f ); meshWorld = Rotation * Scale * Translation; } void RenderText(std::wstring text, int inInt) { d3d11DevCon->PSSetShader(D2D_PS, 0, 0); //Release the D3D 11 Device keyedMutex11->ReleaseSync(0); //Use D3D10.1 device keyedMutex10->AcquireSync(0, 5); //Draw D2D content D2DRenderTarget->BeginDraw(); //Clear D2D Background D2DRenderTarget->Clear(D2D1::ColorF(0.0f, 0.0f, 0.0f, 0.0f)); //Create our string std::wostringstream printString; printString << text << inInt; printText = printString.str(); //Set the Font Color D2D1_COLOR_F FontColor = D2D1::ColorF(1.0f, 1.0f, 1.0f, 1.0f); //Set the brush color D2D will use to draw with Brush->SetColor(FontColor); //Create the D2D Render Area D2D1_RECT_F layoutRect = D2D1::RectF(0, 0, Width, Height); //Draw the Text D2DRenderTarget->DrawText( printText.c_str(), wcslen(printText.c_str()), TextFormat, layoutRect, Brush ); D2DRenderTarget->EndDraw(); //Release the D3D10.1 Device keyedMutex10->ReleaseSync(1); //Use the D3D11 Device keyedMutex11->AcquireSync(1, 5); //Use the shader resource representing the direct2d render target //to texture a square which is rendered in screen space so it //overlays on top of our entire scene. We use alpha blending so //that the entire background of the D2D render target is "invisible", //And only the stuff we draw with D2D will be visible (the text) //Set the blend state for D2D render target texture objects d3d11DevCon->OMSetBlendState(d2dTransparency, NULL, 0xffffffff); //Set the d2d Index buffer d3d11DevCon->IASetIndexBuffer( d2dIndexBuffer, DXGI_FORMAT_R32_UINT, 0); //Set the d2d vertex buffer UINT stride = sizeof( Vertex ); UINT offset = 0; d3d11DevCon->IASetVertexBuffers( 0, 1, &d2dVertBuffer, &stride, &offset ); WVP = XMMatrixIdentity(); cbPerObj.WVP = XMMatrixTranspose(WVP); d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetShaderResources( 0, 1, &d2dTexture ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(CWcullMode); d3d11DevCon->DrawIndexed( 6, 0, 0 ); } void DrawScene() { //Clear our render target and depth/stencil view float bgColor[4] = { 0.5f, 0.5f, 0.5f, 1.0f }; d3d11DevCon->ClearRenderTargetView(renderTargetView, bgColor); d3d11DevCon->ClearDepthStencilView(depthStencilView, D3D11_CLEAR_DEPTH|D3D11_CLEAR_STENCIL, 1.0f, 0); constbuffPerFrame.light = light; d3d11DevCon->UpdateSubresource( cbPerFrameBuffer, 0, NULL, &constbuffPerFrame, 0, 0 ); d3d11DevCon->PSSetConstantBuffers(0, 1, &cbPerFrameBuffer); //Set our Render Target d3d11DevCon->OMSetRenderTargets( 1, &renderTargetView, depthStencilView ); //Set the default blend state (no blending) for opaque objects d3d11DevCon->OMSetBlendState(0, 0, 0xffffffff); // Set vertex buffer and pixel shader d3d11DevCon->VSSetShader(VS, 0, 0); d3d11DevCon->PSSetShader(PS, 0, 0); /************************************New Stuff****************************************************/ ///***Draw INSTANCED Leaf Models***/// // We are now binding two buffers to the input assembler, one for the vertex data, // and one for the instance data, so we will have to create a strides array, offsets array // and buffer array. UINT strides[2] = {sizeof( Vertex ), sizeof( InstanceData )}; UINT offsets[2] = {0, 0}; // Store the vertex and instance buffers into an array // The leaves will use the same instance buffer as the trees, because we need each leaf // to go to a certain tree ID3D11Buffer* vertInstBuffers[2] = {quadVertBuffer, treeInstanceBuff}; // Set the leaf input layout. This is where we will set our special input layout for our leaves d3d11DevCon->IASetInputLayout( leafVertLayout ); //Set the models index buffer (same as before) d3d11DevCon->IASetIndexBuffer(quadIndexBuffer, DXGI_FORMAT_R32_UINT, 0); //Set the models vertex and isntance buffer using the arrays created above d3d11DevCon->IASetVertexBuffers( 0, 2, vertInstBuffers, strides, offsets ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = treeWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(treeWorld); cbPerObj.hasTexture = true; // We'll assume all md5 subsets have textures cbPerObj.hasNormMap = false; // We'll also assume md5 models have no normal map (easy to change later though) cbPerObj.isInstance = true; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = true; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); // We are sending two constant buffers to the vertex shader now, wo we will create an array of them ID3D11Buffer* vsConstBuffers[2] = {cbPerObjectBuffer, cbPerInstanceBuffer}; d3d11DevCon->VSSetConstantBuffers( 0, 2, vsConstBuffers ); d3d11DevCon->PSSetConstantBuffers( 1, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetShaderResources( 0, 1, &leafTexture ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(RSCullNone); d3d11DevCon->DrawIndexedInstanced( 6, numLeavesPerTree * numTrees, 0, 0, 0 ); // Reset the default Input Layout d3d11DevCon->IASetInputLayout( vertLayout ); /////Draw our tree instances///// for(int i = 0; i < treeSubsets; ++i) { // Store the vertex and instance buffers into an array ID3D11Buffer* vertInstBuffers[2] = {treeVertBuff, treeInstanceBuff}; //Set the models index buffer (same as before) d3d11DevCon->IASetIndexBuffer(treeIndexBuff, DXGI_FORMAT_R32_UINT, 0); //Set the models vertex buffer d3d11DevCon->IASetVertexBuffers( 0, 2, vertInstBuffers, strides, offsets ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = treeWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(treeWorld); cbPerObj.difColor = material[treeSubsetTexture[i]].difColor; cbPerObj.hasTexture = material[treeSubsetTexture[i]].hasTexture; cbPerObj.hasNormMap = material[treeSubsetTexture[i]].hasNormMap; cbPerObj.isInstance = true; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = false; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetConstantBuffers( 1, 1, &cbPerObjectBuffer ); if(material[treeSubsetTexture[i]].hasTexture) d3d11DevCon->PSSetShaderResources( 0, 1, &meshSRV[material[treeSubsetTexture[i]].texArrayIndex] ); if(material[treeSubsetTexture[i]].hasNormMap) d3d11DevCon->PSSetShaderResources( 1, 1, &meshSRV[material[treeSubsetTexture[i]].normMapTexArrayIndex] ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(RSCullNone); int indexStart = treeSubsetIndexStart[i]; int indexDrawAmount = treeSubsetIndexStart[i+1] - treeSubsetIndexStart[i]; if(!material[meshSubsetTexture[i]].transparent) d3d11DevCon->DrawIndexedInstanced( indexDrawAmount, numTrees, indexStart, 0, 0 ); } /*************************************************************************************************/ //Set Vertex and Pixel Shaders d3d11DevCon->VSSetShader(VS, 0, 0); d3d11DevCon->PSSetShader(PS, 0, 0); UINT stride = sizeof( Vertex ); UINT offset = 0; ///***Draw MD5 Model***/// for(int i = 0; i < NewMD5Model.numSubsets; i ++) { //Set the grounds index buffer d3d11DevCon->IASetIndexBuffer( NewMD5Model.subsets[i].indexBuff, DXGI_FORMAT_R32_UINT, 0); //Set the grounds vertex buffer d3d11DevCon->IASetVertexBuffers( 0, 1, &NewMD5Model.subsets[i].vertBuff, &stride, &offset ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = playerCharWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(playerCharWorld); cbPerObj.hasTexture = true; // We'll assume all md5 subsets have textures cbPerObj.hasNormMap = false; // We'll also assume md5 models have no normal map (easy to change later though) cbPerObj.isInstance = false; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = false; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetConstantBuffers( 1, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetShaderResources( 0, 1, &meshSRV[NewMD5Model.subsets[i].texArrayIndex] ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(RSCullNone); d3d11DevCon->DrawIndexed( NewMD5Model.subsets[i].indices.size(), 0, 0 ); } /////Draw our model's NON-transparent subsets///// for(int i = 0; i < meshSubsets; ++i) { //Set the grounds index buffer d3d11DevCon->IASetIndexBuffer( meshIndexBuff, DXGI_FORMAT_R32_UINT, 0); //Set the grounds vertex buffer d3d11DevCon->IASetVertexBuffers( 0, 1, &meshVertBuff, &stride, &offset ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = meshWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(meshWorld); cbPerObj.difColor = material[meshSubsetTexture[i]].difColor; cbPerObj.hasTexture = material[meshSubsetTexture[i]].hasTexture; cbPerObj.hasNormMap = material[meshSubsetTexture[i]].hasNormMap; cbPerObj.isInstance = false; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = false; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetConstantBuffers( 1, 1, &cbPerObjectBuffer ); if(material[meshSubsetTexture[i]].hasTexture) d3d11DevCon->PSSetShaderResources( 0, 1, &meshSRV[material[meshSubsetTexture[i]].texArrayIndex] ); if(material[meshSubsetTexture[i]].hasNormMap) d3d11DevCon->PSSetShaderResources( 1, 1, &meshSRV[material[meshSubsetTexture[i]].normMapTexArrayIndex] ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(RSCullNone); int indexStart = meshSubsetIndexStart[i]; int indexDrawAmount = meshSubsetIndexStart[i+1] - meshSubsetIndexStart[i]; if(!material[meshSubsetTexture[i]].transparent) d3d11DevCon->DrawIndexed( indexDrawAmount, indexStart, 0 ); } /////Draw the Sky's Sphere////// //Set the spheres index buffer d3d11DevCon->IASetIndexBuffer( sphereIndexBuffer, DXGI_FORMAT_R32_UINT, 0); //Set the spheres vertex buffer d3d11DevCon->IASetVertexBuffers( 0, 1, &sphereVertBuffer, &stride, &offset ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = sphereWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(sphereWorld); cbPerObj.isInstance = false; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = false; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); //Send our skymap resource view to pixel shader d3d11DevCon->PSSetShaderResources( 0, 1, &smrv ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); //Set the new VS and PS shaders d3d11DevCon->VSSetShader(SKYMAP_VS, 0, 0); d3d11DevCon->PSSetShader(SKYMAP_PS, 0, 0); //Set the new depth/stencil and RS states d3d11DevCon->OMSetDepthStencilState(DSLessEqual, 0); d3d11DevCon->RSSetState(RSCullNone); d3d11DevCon->DrawIndexed( NumSphereFaces * 3, 0, 0 ); //Set the default VS, PS shaders and depth/stencil state d3d11DevCon->VSSetShader(VS, 0, 0); d3d11DevCon->PSSetShader(PS, 0, 0); d3d11DevCon->OMSetDepthStencilState(NULL, 0); /////Draw our model's TRANSPARENT subsets now///// //Set our blend state d3d11DevCon->OMSetBlendState(Transparency, NULL, 0xffffffff); for(int i = 0; i < meshSubsets; ++i) { //Set the grounds index buffer d3d11DevCon->IASetIndexBuffer( meshIndexBuff, DXGI_FORMAT_R32_UINT, 0); //Set the grounds vertex buffer d3d11DevCon->IASetVertexBuffers( 0, 1, &meshVertBuff, &stride, &offset ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = meshWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(meshWorld); cbPerObj.difColor = material[meshSubsetTexture[i]].difColor; cbPerObj.hasTexture = material[meshSubsetTexture[i]].hasTexture; cbPerObj.hasNormMap = material[meshSubsetTexture[i]].hasNormMap; cbPerObj.isInstance = false; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = false; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetConstantBuffers( 1, 1, &cbPerObjectBuffer ); if(material[meshSubsetTexture[i]].hasTexture) d3d11DevCon->PSSetShaderResources( 0, 1, &meshSRV[material[meshSubsetTexture[i]].texArrayIndex] ); if(material[meshSubsetTexture[i]].hasNormMap) d3d11DevCon->PSSetShaderResources( 1, 1, &meshSRV[material[meshSubsetTexture[i]].normMapTexArrayIndex] ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(RSCullNone); int indexStart = meshSubsetIndexStart[i]; int indexDrawAmount = meshSubsetIndexStart[i+1] - meshSubsetIndexStart[i]; if(material[meshSubsetTexture[i]].transparent) d3d11DevCon->DrawIndexed( indexDrawAmount, indexStart, 0 ); } RenderText(L"FPS: ", fps); //Present the backbuffer to the screen SwapChain->Present(0, 0); } int messageloop(){ MSG msg; ZeroMemory(&msg, sizeof(MSG)); while(true) { BOOL PeekMessageL( LPMSG lpMsg, HWND hWnd, UINT wMsgFilterMin, UINT wMsgFilterMax, UINT wRemoveMsg ); if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { if (msg.message == WM_QUIT) break; TranslateMessage(&msg); DispatchMessage(&msg); } else{ // run game code frameCount++; if(GetTime() > 1.0f) { fps = frameCount; frameCount = 0; StartTimer(); } frameTime = GetFrameTime(); DetectInput(frameTime); UpdateScene(frameTime); DrawScene(); } } return msg.wParam; } LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) { switch( msg ) { case WM_KEYDOWN: if( wParam == VK_ESCAPE ){ DestroyWindow(hwnd); } return 0; case WM_DESTROY: PostQuitMessage(0); return 0; } return DefWindowProc(hwnd, msg, wParam, lParam); } Effects.fx #define NUM_LEAVES_PER_TREE 1000 struct Light { float3 pos; float range; float3 dir; float cone; float3 att; float4 ambient; float4 diffuse; }; cbuffer cbPerFrame { Light light; }; cbuffer cbPerObject { float4x4 WVP; float4x4 World; float4 difColor; bool hasTexture; bool hasNormMap; bool isInstance; bool isLeaf; }; cbuffer cbPerScene { float4x4 leafOnTree[NUM_LEAVES_PER_TREE]; }; Texture2D ObjTexture; Texture2D ObjNormMap; SamplerState ObjSamplerState; TextureCube SkyMap; struct VS_OUTPUT { float4 Pos : SV_POSITION; float4 worldPos : POSITION; float2 TexCoord : TEXCOORD; float3 normal : NORMAL; float3 tangent : TANGENT; }; struct SKYMAP_VS_OUTPUT //output structure for skymap vertex shader { float4 Pos : SV_POSITION; float3 texCoord : TEXCOORD; }; VS_OUTPUT VS(float4 inPos : POSITION, float2 inTexCoord : TEXCOORD, float3 normal : NORMAL, float3 tangent : TANGENT, float3 instancePos : INSTANCEPOS, uint instanceID : SV_InstanceID) { VS_OUTPUT output; if(isInstance) { // get leaves position on tree, then add trees position if(isLeaf) { // We have 1000 leaves per tree, so we can find the current leaf (in the tree) we are on (so we can get it's matrix from the matrix array stored in cbPerScene) // by first getting the current tree (instanceID / NUM_LEAVES_PER_TREE). We can then find the current leaf in the tree we are on by multiplying the current tree id // with the number of leaves per tree, then subtracting that total from the current instance id. uint currTree = (instanceID / NUM_LEAVES_PER_TREE); uint currLeafInTree = instanceID - (currTree * NUM_LEAVES_PER_TREE); inPos = mul(inPos, leafOnTree[currLeafInTree]); } // set position using instance data inPos += float4(instancePos, 0.0f); } output.Pos = mul(inPos, WVP); output.worldPos = mul(inPos, World); output.normal = mul(normal, World); output.tangent = mul(tangent, World); output.TexCoord = inTexCoord; return output; } SKYMAP_VS_OUTPUT SKYMAP_VS(float3 inPos : POSITION, float2 inTexCoord : TEXCOORD, float3 normal : NORMAL, float3 tangent : TANGENT) { SKYMAP_VS_OUTPUT output = (SKYMAP_VS_OUTPUT)0; //Set Pos to xyww instead of xyzw, so that z will always be 1 (furthest from camera) output.Pos = mul(float4(inPos, 1.0f), WVP).xyww; output.texCoord = inPos; return output; } float4 PS(VS_OUTPUT input) : SV_TARGET { input.normal = normalize(input.normal); //Set diffuse color of material float4 diffuse = difColor; //If material has a diffuse texture map, set it now if(hasTexture == true) diffuse = ObjTexture.Sample( ObjSamplerState, input.TexCoord ); clip(diffuse.a - 0.25); //If material has a normal map, we can set it now if(hasNormMap == true) { //Load normal from normal map float4 normalMap = ObjNormMap.Sample( ObjSamplerState, input.TexCoord ); //Change normal map range from [0, 1] to [-1, 1] normalMap = (2.0f*normalMap) - 1.0f; //Make sure tangent is completely orthogonal to normal input.tangent = normalize(input.tangent - dot(input.tangent, input.normal)*input.normal); //Create the biTangent float3 biTangent = cross(input.normal, input.tangent); //Create the "Texture Space" float3x3 texSpace = float3x3(input.tangent, biTangent, input.normal); //Convert normal from normal map to texture space and store in input.normal input.normal = normalize(mul(normalMap, texSpace)); } float3 finalColor; finalColor = diffuse * light.ambient; finalColor += saturate(dot(light.dir, input.normal) * light.diffuse * diffuse); return float4(finalColor, diffuse.a); } float4 SKYMAP_PS(SKYMAP_VS_OUTPUT input) : SV_Target { return SkyMap.Sample(ObjSamplerState, input.texCoord); } float4 D2D_PS(VS_OUTPUT input) : SV_TARGET { float4 diffuse = ObjTexture.Sample( ObjSamplerState, input.TexCoord ); return diffuse; }