This tutorial is part of a Collection: 03. DirectX 11 - Braynzar Soft Tutorials
rate up
0
rate down
13983
views
bookmark
34. (AABB) CPU Side Frustum Culling

This is another lesson that you will most definitely want to learn how to do because of the massive performance boost it can give you. In this lesson, we will have 4000 trees in our scene! How is this possible? This is possible with the technique called frustum culling! We will be learning how to check if an objects AABB (Axis-Aligned Bounding Box) is within the cameras view, and if it isn't, we will not send it to the GPU, easy as that! I say "CPU Side Frustum Culling" because the GPU actually does frustum culling for us. The problem with that though, is that the GPU must check every single triangle we send to it, so in this lesson, we will check if an objects bounding volume is within view of the camera before we send it to the shaders for more accurate frustum culling.

1228 downloads
##Introduction## This lesson builds off the last lesson, Instancing. View Frustum Culling (with AABB) is a technique that stops entire models from being sent to the GPU if they are not in view of the camera (in the view frustum). In the last lesson, instancing, we made a small forest of 400 trees (with 1000 leaves per tree). Even with the instancing technique, the forest was a performance hit, dropping the fps down quite a bit. That was because no matter where we were looking in the scene, all 400 trees were still being drawn, only to be culled by the GPU. The GPU checks every single triangle when checking if geometry should be culled, So think about those 400 tree models with 1000 quads (leaves) per tree that the GPU had to check! View Frustum Culling (on the CPU side) will check each models bounding volume (AABB in this lesson, as i have found it is generally slightly faster) to see if it is in view of the camera. If the model (tree in this case) is in view, we will add one to the amount of tree instances to draw, and update the instance buffer so that the tree positions we want to draw are at the beginning of the instanceData array (same for the number of leaves, subtract one tree's worth of leaves from being instanced). In this lesson, we will have a scene filled with 4000 trees, each tree with 1000 leaves! I have spaced out the trees more than i did in the last lesson, just to give it a slightly different feel, and a better performance, also moving the far plane closer so we do not see so many trees so far away, and you can watch them as they nicely come into view, as the gpu does the accurate frustum culling. Here are a couple sites on frustum culling you may find helpful if my lesson just doesn't cut it ;) .[http://www.racer.nl/reference/vfc_markmorley.htm][http://www.racer.nl/reference/vfc_markmorley.htm] .[http://www.gamedev.net/topic/162362-aabb-of-view-frustum/][http://www.gamedev.net/topic/162362-aabb-of-view-frustum/] .[http://www.chadvernon.com/blog/resources/directx9/frustum-culling/][http://www.chadvernon.com/blog/resources/directx9/frustum-culling/] .[http://crazyjoke.free.fr/doc/3D/plane%20extraction.pdf][http://crazyjoke.free.fr/doc/3D/plane%20extraction.pdf] .[http://www.chadvernon.com/blog/resources/directx9/frustum-culling/][http://www.chadvernon.com/blog/resources/directx9/frustum-culling/] .[ftp://kkucherenkov.sknt.ru/temp/dev/graphics/vfc_bbox.pdf ][ftp://kkucherenkov.sknt.ru/temp/dev/graphics/vfc_bbox.pdf ] ##View Frustum## The first thing we have to do is get the view frustum. The view frustum is everything the camera can see. It was explained in the lesson on spaces (world view projection). The view frustum is basically like a pyramid with the tip cut off. The base of the pyramid is what is called the "far plane", while the top of the pyrimid (with the tip cut off) is called the "near plane". The sides of they pyramid is what we call the top, bottom, right and left planes. If any geometry is inside the view frustum, it is drawn to the screen, while all other geometry is "culled" and not drawn at all. To get the view frustum (total of 6 planes), we will be extracting it from the view/projection matrix (view * projection). The projection matrix defines the view frustum in screen space, while the view matrix can be looked at as the camera position (view frustum) in world space. If you read the lesson on sliding camera collision detection, we talked about the plane equation. A plane can be defined by 4 variables, "A, B, C, and D". ABC represent the xyz of the planes normal, and D represents the plane constant. To get a plane from the viewprojection matrix, we will either add or subtract a column from the fourth column of the matrix, depending on the plane we want. Below is how we extract the 6 planes from the view/projection matrix: // Left Frustum Plane // Add first column of the matrix to the fourth column FrustumPlane[0].x = viewProj._14 + viewProj._11; FrustumPlane[0].y = viewProj._24 + viewProj._21; FrustumPlane[0].z = viewProj._34 + viewProj._31; FrustumPlane[0].w = viewProj._44 + viewProj._41; // Right Frustum Plane // Subtract first column of matrix from the fourth column FrustumPlane[1].x = viewProj._14 - viewProj._11; FrustumPlane[1].y = viewProj._24 - viewProj._21; FrustumPlane[1].z = viewProj._34 - viewProj._31; FrustumPlane[1].w = viewProj._44 - viewProj._41; // Top Frustum Plane // Subtract second column of matrix from the fourth column FrustumPlane[2].x = viewProj._14 - viewProj._12; FrustumPlane[2].y = viewProj._24 - viewProj._22; FrustumPlane[2].z = viewProj._34 - viewProj._32; FrustumPlane[2].w = viewProj._44 - viewProj._42; // Bottom Frustum Plane // Add second column of the matrix to the fourth column FrustumPlane[3].x = viewProj._14 + viewProj._12; FrustumPlane[3].y = viewProj._24 + viewProj._22; FrustumPlane[3].z = viewProj._34 + viewProj._32; FrustumPlane[3].w = viewProj._44 + viewProj._42; // Near Frustum Plane // We could add the third column to the fourth column to get the near plane, // but we don't have to do this because the third column IS the near plane FrustumPlane[4].x = viewProj._13; FrustumPlane[4].y = viewProj._23; FrustumPlane[4].z = viewProj._33; FrustumPlane[4].w = viewProj._43; // Far Frustum Plane // Subtract third column of matrix from the fourth column FrustumPlane[5].x = viewProj._14 - viewProj._13; FrustumPlane[5].y = viewProj._24 - viewProj._23; FrustumPlane[5].z = viewProj._34 - viewProj._33; FrustumPlane[5].w = viewProj._44 - viewProj._43; Where "xyzw" of the plane represent "ABCD", and viewProj is the "view * projection" matrix. The resulting planes are NOT normalized, so we will have to normalize them. Also know that the planes are facing INTO the frustum plane, not away. So to normalize a plane is easy enough. All we have to do is get the length of the planes normal, then divide each plane component by that length. This will give us a unit vector for the normal (abc (a.k.a. xyz), and the normalized plane constant: Length² = A² + B² + C² A = A / Length B = B / Length C = C / Length D = D / Length // In code float length = sqrt((FrustumPlane[i].x * FrustumPlane[i].x) + (FrustumPlane[i].y * FrustumPlane[i].y) + (FrustumPlane[i].z * FrustumPlane[i].z)); FrustumPlane[i].x /= length; FrustumPlane[i].y /= length; FrustumPlane[i].z /= length; FrustumPlane[i].w /= length; ##Frustum Culling## To impliment frustum culling, we will be finding which side of each of the frustum planes a point is on. We do this by getting the signed distance from the plane to the point (signed distance means that it can be negative). If the signed distance is negative, then the point is "behind" the plane, and should be culled (because everything behind any of the frustum planes is not in view). We get the signed distance with the following equation: signedDistance = planeNormal . point + planeConstant If (signedDistance < 0) then the point should be culled (in our case, not sent to the GPU). However, if (signedDistance > 0) then we have to move on to the next plane. If after we have checked all 6 frustum planes, and the signed distance was greater than all of them, we know the point is in view, and should be drawn to the screen (in our case, sent to the GPU). **Frustum Culling Check with AABB** Now that we have the frustum planes, and know how to check if a point should be culled or not, we can expand and move on to bounding volumes (if an objects AABB is in view). If the object's bounding volume (AABB in this lesson) is in view, we will send the object to the GPU. Bounding Volumes, specifically AABB's were discussed in the lesson on bounding volumes, be we'll have a refresher. An AABB (Axis-Aligned Bounding Box) is a box defined by two vertices, the min and the max, which completely enclose the object it is bound to. The min vertex is the smalles x, y, and z values that the model "reaches" to, while the max is the largest x, y, and z values the model reaches to. AABB's cannot be rotated, so for objects that rotate, a bounding sphere or Oriented Bounding Box (OBB) could be used for a tighter fit of the model. AABB's must be recomputed whenever the model has been scaled, rotated, or animated. AABB's must be defined in world space. Our AABB is defined in world space, but at the origin of the world (0,0,0). We will add each trees position to the min and max vertices of the AABB for the tree to get it's actual location in the world. Now for the fun stuff, checking if the AABB is in the inside or outside "halfspace" of a frustum plane. If a point is in the inside halfspace, then it is in front of the frustum plane, and if it is in the ouside halfspace, it is behind the frustum plane. To find if an AABB is in the outside halfspace of a frustum plane, we first need to find the vertex of the AABB that is on the furthest side of the AABB in the direction that the plane normal points. If we find that that point is in the outside halfspace of a frustum plane, we know for certain that this AABB is not in view, but if it's in the inside halfspace of a frustum plane, we will have to move to the next frustum plane. If we have check all frustum planes, and the AABB was in the inside halfspace of all of them, the AABB is visible, and should be sent to the GPU. This is actually a very simple concept, but i think a picture will make it more clear: +[http://www.braynzarsoft.net/image/100090][Frustum culling] Here is a check between a frustum plane and the furthest point on the AABB that the plane normal points to. We have to check each axis to find which way the plane normal points down that axis. Then we get the min or max axis component from the AABB to create our "axisVert", or the vert that is furthest in the direction of the plane normal: // x-axis if(frustumPlanes[planeID].x < 0.0f) // Which AABB vertex is furthest down (plane normals direction) the x axis axisVert.x = treeAABB[0].x + treeInstanceData[i].pos.x; // min x plus tree positions x else axisVert.x = treeAABB[1].x + treeInstanceData[i].pos.x; // max x plus tree positions x // y-axis if(frustumPlanes[planeID].y < 0.0f) // Which AABB vertex is furthest down (plane normals direction) the y axis axisVert.y = treeAABB[0].y + treeInstanceData[i].pos.y; // min y plus tree positions y else axisVert.y = treeAABB[1].y + treeInstanceData[i].pos.y; // max y plus tree positions y // z-axis if(frustumPlanes[planeID].z < 0.0f) // Which AABB vertex is furthest down (plane normals direction) the z axis axisVert.z = treeAABB[0].z + treeInstanceData[i].pos.z; // min z plus tree positions z else axisVert.z = treeAABB[1].z + treeInstanceData[i].pos.z; // max z plus tree positions z // Now we get the signed distance from the AABB vertex that's furthest down the frustum planes normal, // and if the signed distance is negative, then the entire bounding box is behind the frustum plane, which means // that it should be culled if(Dot(planeNormal, axisVert) + planeConstant < 0.0f) cull = true; One last thing I want to say. I have put all the global variables, structures, and function prototypes in a new header file "main.h", because i found, along with some of you that the main.cpp was getting way too cluttered and took a long time to read through. I also reorganized the code slightly, so the new functions are at the top of main.cpp, followed by functions that were updated or are updated often. Also, when making a game, I strongly advise you not to code it like my lessons. Try never to make a variable global if you can, and use classes to keep the code organized and easier to work with. I always felt reading through functions was more straightforward than using classes and such, so that's why i make many global variables and do not use classes in my lessons. Bad coding practice (VERY bad actually), but I do it so you can follow the code easier (I know not everyone will think this is easier to follow, but in my personal experience, and many noobs I have helped throughout the years often found classes not very straight forward, and my lessons are aimed at noobs and beginners, so i hope you will respect my choice to not use classes in the lessons) ##New Globals## First up is our new globlas. The first one is the new number of trees in our scene. We will be using an AABB in this lesson for the trees, so the next one is an array of XMFLOAT3's, which is the min and max vertex of the AABB. After that we have an integer, which is the number of trees we will be sending to the GPU. We will also show this number below the FPS so we know that our frustum culling is working. const int numTrees = 4000; std::vector<XMFLOAT3> treeAABB; int numTreesToDraw; ##New Functions## We have 3 new functions in this lesson. The first one creates an AABB for a model, second one checks if the objects should be culled or not, and third one gets the frustum planes from the veiw projection matrix. std::vector<XMFLOAT3> CreateAABB(std::vector<XMFLOAT3> &vertPosArray); void cullAABB(std::vector<XMFLOAT4> &frustumPlanes); std::vector<XMFLOAT4> getFrustumPlanes(XMMATRIX& viewProj); ##The getFrustumPlanes() Function## This is the function that extracts the frustum planes from the view projection matrix, and returns a vector of XMFLOAT4's, which are the 6 planes of the frustum. std::vector<XMFLOAT4> getFrustumPlanes(XMMATRIX& viewProj) { // x, y, z, and w represent A, B, C and D in the plane equation // where ABC are the xyz of the planes normal, and D is the plane constant std::vector<XMFLOAT4> tempFrustumPlane(6); // Left Frustum Plane // Add first column of the matrix to the fourth column tempFrustumPlane[0].x = viewProj._14 + viewProj._11; tempFrustumPlane[0].y = viewProj._24 + viewProj._21; tempFrustumPlane[0].z = viewProj._34 + viewProj._31; tempFrustumPlane[0].w = viewProj._44 + viewProj._41; // Right Frustum Plane // Subtract first column of matrix from the fourth column tempFrustumPlane[1].x = viewProj._14 - viewProj._11; tempFrustumPlane[1].y = viewProj._24 - viewProj._21; tempFrustumPlane[1].z = viewProj._34 - viewProj._31; tempFrustumPlane[1].w = viewProj._44 - viewProj._41; // Top Frustum Plane // Subtract second column of matrix from the fourth column tempFrustumPlane[2].x = viewProj._14 - viewProj._12; tempFrustumPlane[2].y = viewProj._24 - viewProj._22; tempFrustumPlane[2].z = viewProj._34 - viewProj._32; tempFrustumPlane[2].w = viewProj._44 - viewProj._42; // Bottom Frustum Plane // Add second column of the matrix to the fourth column tempFrustumPlane[3].x = viewProj._14 + viewProj._12; tempFrustumPlane[3].y = viewProj._24 + viewProj._22; tempFrustumPlane[3].z = viewProj._34 + viewProj._32; tempFrustumPlane[3].w = viewProj._44 + viewProj._42; // Near Frustum Plane // We could add the third column to the fourth column to get the near plane, // but we don't have to do this because the third column IS the near plane tempFrustumPlane[4].x = viewProj._13; tempFrustumPlane[4].y = viewProj._23; tempFrustumPlane[4].z = viewProj._33; tempFrustumPlane[4].w = viewProj._43; // Far Frustum Plane // Subtract third column of matrix from the fourth column tempFrustumPlane[5].x = viewProj._14 - viewProj._13; tempFrustumPlane[5].y = viewProj._24 - viewProj._23; tempFrustumPlane[5].z = viewProj._34 - viewProj._33; tempFrustumPlane[5].w = viewProj._44 - viewProj._43; // Normalize plane normals (A, B and C (xyz)) // Also take note that planes face inward for(int i = 0; i < 6; ++i) { float length = sqrt((tempFrustumPlane[i].x * tempFrustumPlane[i].x) + (tempFrustumPlane[i].y * tempFrustumPlane[i].y) + (tempFrustumPlane[i].z * tempFrustumPlane[i].z)); tempFrustumPlane[i].x /= length; tempFrustumPlane[i].y /= length; tempFrustumPlane[i].z /= length; tempFrustumPlane[i].w /= length; } return tempFrustumPlane; } ##The cullAABB() Function## This is the function that will check our trees if they should be sent to the GPU or not. This is a bad way to do this, because as it is, it's not very flexible to check other objects in the scene. This function specifically checks only the tree's AABB's for culling. Let this be an exercise to make the function more generic so you can check any objects AABB's. This shouldn't be hard because all you need is the frustum planes, position of the object (unless the AABB is already at the position, which it usually is), and the objects AABB. At the end of this function, we update our instance buffer for the trees positions so that all the positions of the trees that are to be drawn are at the beginning of the array. void cullAABB(std::vector<XMFLOAT4> &frustumPlanes) { // This is where we will check all objects for culling. In this lesson, we are only culling the trees, so if the tree is culled, // we will not draw it OR it's leaves. You can add other objects in your scene, and check them for culling here // Initialize numTreesToDraw numTreesToDraw = 0; // Create a temporary array to get the tree instance data out std::vector<InstanceData> tempTreeInstDat(numTrees); bool cull = false; // We'll start by looping through each tree for(int i = 0; i < numTrees; ++i) { cull = false; // Loop through each frustum plane for(int planeID = 0; planeID < 6; ++planeID) { XMVECTOR planeNormal = XMVectorSet(frustumPlanes[planeID].x, frustumPlanes[planeID].y, frustumPlanes[planeID].z, 0.0f); float planeConstant = frustumPlanes[planeID].w; // Check each axis (x,y,z) to get the AABB vertex furthest away from the direction the plane is facing (plane normal) XMFLOAT3 axisVert; // x-axis if(frustumPlanes[planeID].x < 0.0f) // Which AABB vertex is furthest down (plane normals direction) the x axis axisVert.x = treeAABB[0].x + treeInstanceData[i].pos.x; // min x plus tree positions x else axisVert.x = treeAABB[1].x + treeInstanceData[i].pos.x; // max x plus tree positions x // y-axis if(frustumPlanes[planeID].y < 0.0f) // Which AABB vertex is furthest down (plane normals direction) the y axis axisVert.y = treeAABB[0].y + treeInstanceData[i].pos.y; // min y plus tree positions y else axisVert.y = treeAABB[1].y + treeInstanceData[i].pos.y; // max y plus tree positions y // z-axis if(frustumPlanes[planeID].z < 0.0f) // Which AABB vertex is furthest down (plane normals direction) the z axis axisVert.z = treeAABB[0].z + treeInstanceData[i].pos.z; // min z plus tree positions z else axisVert.z = treeAABB[1].z + treeInstanceData[i].pos.z; // max z plus tree positions z // Now we get the signed distance from the AABB vertex that's furthest down the frustum planes normal, // and if the signed distance is negative, then the entire bounding box is behind the frustum plane, which means // that it should be culled if(XMVectorGetX(XMVector3Dot(planeNormal, XMLoadFloat3(&axisVert))) + planeConstant < 0.0f) { cull = true; // Skip remaining planes to check and move on to next tree break; } } if(!cull) // If the object was not culled { // Set the treesToDrawIndex in the constant buffer. We are rearanging the tree instance positions, so that the trees // that will be drawn have their positions first. This way, when the GPU loops through the instances, it will first // get all the tree positions that we want to draw. We are not going to have the GPU draw all 4000 trees, only the couple // that are in the view frustum, so we want those tree positions to be the first ones in the instance buffer array tempTreeInstDat[numTreesToDraw].pos = treeInstanceData[i].pos; // Add one to the number of trees to draw numTreesToDraw++; } } // Update our instance buffer with our new (newly ordered) array of tree instance data (positions) d3d11DevCon->UpdateSubresource( treeInstanceBuff, 0, NULL, &tempTreeInstDat[0], 0, 0 ); } ##The CreateAABB() Function## We already know how to do this (that is, if you have read the lesson on bounding volumes). This function computes the min and max vertices of an object's AABB. std::vector<XMFLOAT3> CreateAABB(std::vector<XMFLOAT3> &vertPosArray) { XMFLOAT3 minVertex = XMFLOAT3(FLT_MAX, FLT_MAX, FLT_MAX); XMFLOAT3 maxVertex = XMFLOAT3(-FLT_MAX, -FLT_MAX, -FLT_MAX); for(UINT i = 0; i < vertPosArray.size(); i++) { // The minVertex and maxVertex will most likely not be actual vertices in the model, but vertices // that use the smallest and largest x, y, and z values from the model to be sure ALL vertices are // covered by the bounding volume //Get the smallest vertex minVertex.x = min(minVertex.x, vertPosArray[i].x); // Find smallest x value in model minVertex.y = min(minVertex.y, vertPosArray[i].y); // Find smallest y value in model minVertex.z = min(minVertex.z, vertPosArray[i].z); // Find smallest z value in model //Get the largest vertex maxVertex.x = max(maxVertex.x, vertPosArray[i].x); // Find largest x value in model maxVertex.y = max(maxVertex.y, vertPosArray[i].y); // Find largest y value in model maxVertex.z = max(maxVertex.z, vertPosArray[i].z); // Find largest z value in model } std::vector<XMFLOAT3> AABB; // Our AABB [0] is the min vertex and [1] is the max AABB.push_back(minVertex); AABB.push_back(maxVertex); return AABB; } ##InitScene() Function## Let's go down to our initScene function, where we update the line of code that loads in the obj model tree. At the end, we will provide it with our XMFLOAT3 array, which will be filled with the min and max vertices of the tree's AABB. if(!LoadObjModel(L"tree.obj", &treeVertBuff, &treeIndexBuff, treeSubsetIndexStart, treeSubsetTexture, material, treeSubsets, true, true, treeAABB)) return false; ##New Far Plane## I've decided to make the near plane much closer. This is to increase performance, and also so you can watch the trees as they sort of fade in when they enter the View Frustum. This is the GPU's work of culling each triangle. The tree doesn't actually fade in, it just sort of looks like it because of all the separate leaves. camProjection = XMMatrixPerspectiveFovLH( 3.14f/4.0f, (float)Width/Height, 1.0f, 200.0f); ##Calling the cullAABB() Function## Now down to the DrawScene() function, where we will actually do the culling of our trees. We call the cullAABB() function, passing it getFrustumPlanes(), which we pass the view*projection matrix to. After calling this, our instance buffer is updated, so that the trees that will be drawn will have their positions first in the instanceData array. The numTreesToDraw is also updated, so we can say how many trees and leaf instances we want the GPU to draw. cullAABB(getFrustumPlanes(camView * camProjection)); ##Drawing the Tree/Leaves## Everything is about the same, only difference is we are now changing the number of trees and leaves to draw each frame, depending on which trees get culled (or more like which trees don't get culled ;) d3d11DevCon->DrawIndexedInstanced( 6, numLeavesPerTree * numTreesToDraw, 0, 0, 0 ); ... d3d11DevCon->DrawIndexedInstanced( indexDrawAmount, numTreesToDraw, indexStart, 0, 0 ); ##How Many Trees Are We Sending To The GPU?## Let's show how many trees we are sending to the GPU so we know that our culling methods are working ;) printString << text << inInt << L"\n" << L"Num Trees To Draw: " << numTreesToDraw; ##Updating cbPerScene## This constant buffer is only updated a single time per scene, so we can do this update while initializing the scene. The data we update the constant buffer with will stay on the GPU until we are through with the scene. We do this so that we do not update the buffer every time we draw our leaves, since our leaves are not going to change positions. However, if you wanted to animate the leaves or whatever, you will have to update this buffer (or another buffer with the animation matrix) more than once per scene, and most likely every frame. d3d11DevCon->UpdateSubresource( cbPerInstanceBuffer, 0, NULL, &cbPerInst, 0, 0); ##Create the AABB in the LoadObjModel() Function## We will now update our loadObjModel() function to take an array of XMFLOAT3's so it can call the createAABB() function to get the AABB for the loaded model. Then we call the createAABB() at the end of the loadObjModel() function, providing it with the positions of each vertex in the model. bool LoadObjModel(std::wstring filename, ID3D11Buffer** vertBuff, ID3D11Buffer** indexBuff, std::vector<int>& subsetIndexStart, std::vector<int>& subsetMaterialArray, std::vector<SurfaceMaterial>& material, int& subsetCount, bool isRHCoordSys, bool computeNormals, std::vector<XMFLOAT3> &AABB) .. AABB = CreateAABB(vertPos); You might also want to look into other methods of culling, such as occlusion culling, which will cull objects that are behind other objects. Basically the way this works is that you sort each object by depth from the camera, then you turn off the color state (so nothing is actually drawn to the render target), and so the only thing thats drawn is to the depth buffer. If the object BOUNDING VOLUME had no pixels drawn to the depth buffer, then you will not draw the object (drawing bounding volumes are much faster than drawing models with many triangles) Check this out for occlusion culling: .[http://http.developer.nvidia.com/GPUGems/gpugems_ch29.html][http://http.developer.nvidia.com/GPUGems/gpugems_ch29.html] ##Exercise:## 1. Update the cullAABB() function to be more generic, so you can just pass in an objects AABB and the view frustum planes. 2. Try out other methods of bounding volume and frustum culling detection, such as bounding spheres, or OBB's. Here's the final code: main.h //Include and link appropriate libraries and headers// #pragma comment(lib, "d3d11.lib") #pragma comment(lib, "d3dx11.lib") #pragma comment(lib, "d3dx10.lib") #pragma comment (lib, "D3D10_1.lib") #pragma comment (lib, "DXGI.lib") #pragma comment (lib, "D2D1.lib") #pragma comment (lib, "dwrite.lib") #pragma comment (lib, "dinput8.lib") #pragma comment (lib, "dxguid.lib") #include <windows.h> #include <d3d11.h> #include <d3dx11.h> #include <d3dx10.h> #include <xnamath.h> #include <D3D10_1.h> #include <DXGI.h> #include <D2D1.h> #include <sstream> #include <dwrite.h> #include <dinput.h> #include <vector> #include <fstream> #include <istream> // Global Declarations - Interfaces // IDXGISwapChain* SwapChain; ID3D11Device* d3d11Device; ID3D11DeviceContext* d3d11DevCon; ID3D11RenderTargetView* renderTargetView; ID3D11DepthStencilView* depthStencilView; ID3D11Texture2D* depthStencilBuffer; ID3D11VertexShader* VS; ID3D11PixelShader* PS; ID3D11PixelShader* D2D_PS; ID3D10Blob* D2D_PS_Buffer; ID3D10Blob* VS_Buffer; ID3D10Blob* PS_Buffer; ID3D11InputLayout* vertLayout; ID3D11Buffer* cbPerObjectBuffer; ID3D11BlendState* d2dTransparency; ID3D11RasterizerState* CCWcullMode; ID3D11RasterizerState* CWcullMode; ID3D11SamplerState* CubesTexSamplerState; ID3D11Buffer* cbPerFrameBuffer; ID3D10Device1 *d3d101Device; IDXGIKeyedMutex *keyedMutex11; IDXGIKeyedMutex *keyedMutex10; ID2D1RenderTarget *D2DRenderTarget; ID2D1SolidColorBrush *Brush; ID3D11Texture2D *BackBuffer11; ID3D11Texture2D *sharedTex11; ID3D11Buffer *d2dVertBuffer; ID3D11Buffer *d2dIndexBuffer; ID3D11ShaderResourceView *d2dTexture; IDWriteFactory *DWriteFactory; IDWriteTextFormat *TextFormat; IDirectInputDevice8* DIKeyboard; IDirectInputDevice8* DIMouse; ID3D11Buffer* sphereIndexBuffer; ID3D11Buffer* sphereVertBuffer; ID3D11VertexShader* SKYMAP_VS; ID3D11PixelShader* SKYMAP_PS; ID3D10Blob* SKYMAP_VS_Buffer; ID3D10Blob* SKYMAP_PS_Buffer; ID3D11ShaderResourceView* smrv; ID3D11DepthStencilState* DSLessEqual; ID3D11RasterizerState* RSCullNone; ID3D11BlendState* Transparency; ID3D11BlendState* leafTransparency; // Global Declarations - Others // LPCTSTR WndClassName = L"firstwindow"; HWND hwnd = NULL; HRESULT hr; // Integers int Width = 800; int Height = 600; int NumSphereVertices; int NumSphereFaces; // Floating Point float rotx = 0; float rotz = 0; float scaleX = 1.0f; float scaleY = 1.0f; float charCamDist = 15.0f; // This is the distance between the camera and the character float moveLeftRight = 0.0f; float moveBackForward = 0.0f; float camYaw = 0.0f; float camPitch = 0.0f; // Matrices XMMATRIX Rotationx; XMMATRIX Rotationz; XMMATRIX Rotationy; XMMATRIX WVP; XMMATRIX camView; XMMATRIX camProjection; XMMATRIX d2dWorld; XMMATRIX camRotationMatrix; XMMATRIX Rotation; XMMATRIX Scale; XMMATRIX Translation; XMMATRIX playerCharWorld; XMMATRIX treeWorld; XMMATRIX sphereWorld; // Vectors XMVECTOR camPosition; XMVECTOR camTarget; XMVECTOR camUp; XMVECTOR DefaultForward = XMVectorSet(0.0f,0.0f,1.0f, 0.0f); XMVECTOR DefaultRight = XMVectorSet(1.0f,0.0f,0.0f, 0.0f); XMVECTOR camForward = XMVectorSet(0.0f,0.0f,1.0f, 0.0f); XMVECTOR camRight = XMVectorSet(1.0f,0.0f,0.0f, 0.0f); XMVECTOR currCharDirection = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); XMVECTOR oldCharDirection = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); XMVECTOR charPosition = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); // Setting this global in case it can be used somewhere else in the app // Other Variables DIMOUSESTATE mouseLastState; LPDIRECTINPUT8 DirectInput; std::wstring printText; // Clock (Timer) variables double countsPerSecond = 0.0; __int64 CounterStart = 0; int frameCount = 0; int fps = 0; __int64 frameTimeOld = 0; double frameTime; // Mesh variables. Each loaded mesh will need its own set of these ID3D11Buffer* meshVertBuff; ID3D11Buffer* meshIndexBuff; int meshSubsets = 0; std::vector<int> meshSubsetIndexStart; std::vector<int> meshSubsetTexture; XMMATRIX meshWorld; // Textures and material variables, used for all mesh's loaded std::vector<ID3D11ShaderResourceView*> meshSRV; std::vector<std::wstring> textureNameArray; // Forest Variables const int numLeavesPerTree = 1000; /************************************New Stuff****************************************************/ const int numTrees = 4000; /*************************************************************************************************/ // leaf data (leaves are drawn as quads) ID3D11ShaderResourceView* leafTexture; ID3D11Buffer *quadVertBuffer; ID3D11Buffer *quadIndexBuffer; // Tree data (loaded from an obj file) ID3D11Buffer* treeInstanceBuff; ID3D11Buffer* treeVertBuff; ID3D11Buffer* treeIndexBuff; int treeSubsets = 0; std::vector<int> treeSubsetIndexStart; std::vector<int> treeSubsetTexture; /************************************New Stuff****************************************************/ std::vector<XMFLOAT3> treeAABB; int numTreesToDraw; /*************************************************************************************************/ // Structures // //Create effects constant buffer's structure// struct cbPerObject { XMMATRIX WVP; XMMATRIX World; //These will be used for the pixel shader XMFLOAT4 difColor; BOOL hasTexture; //Because of HLSL structure packing, we will use windows BOOL //instead of bool because HLSL packs things into 4 bytes, and //bool is only one byte, where BOOL is 4 bytes BOOL hasNormMap; // Usually you will want to create a separate vertex shader for instanced geometry, however // to keep things simple, i use the same vertex shader we have been using, but instead only // apply the instance calculations if isInstance is set to true, and the leaf calculations // if both isInstance and isLeaf are set to true BOOL isInstance; BOOL isLeaf; }; cbPerObject cbPerObj; // This constant buffer is updated per scene. We will not be chaning the position of our leaves throughout // the scene, so we only need to send this to the gpu once, instead of every frame struct cbPerScene { // Each tree gets 1000 leaves (numLeavesPerTree), so we create a matrix array of 1000 matrices that // store the leaves position, orientation, and scale relative to the tree positions. All trees will // have the same number of leaves, with the same position, orientation, and scale of each leaf. XMMATRIX leafOnTree[numLeavesPerTree]; }; cbPerScene cbPerInst; ID3D11Buffer* cbPerInstanceBuffer; ID3D11InputLayout* leafVertLayout; // This is the data structure we will store in our instance buffer. It's very similar to the idea of // the vertex structure, where we create a layout for the vertex structure, we also need to create // the layout for the instance buffer (they are created together as a single layout). We will only // store the position of our trees in this instance structure, but this is where you would add // other things like color, rotations, matrices, whatever struct InstanceData { XMFLOAT3 pos; }; std::vector<InstanceData> treeInstanceData(numTrees); //Create material structure struct SurfaceMaterial { std::wstring matName; XMFLOAT4 difColor; int texArrayIndex; int normMapTexArrayIndex; bool hasNormMap; bool hasTexture; bool transparent; }; std::vector<SurfaceMaterial> material; //Define LoadObjModel function after we create surfaceMaterial structure bool LoadObjModel(std::wstring filename, //.obj filename ID3D11Buffer** vertBuff, //mesh vertex buffer ID3D11Buffer** indexBuff, //mesh index buffer std::vector<int>& subsetIndexStart, //start index of each subset std::vector<int>& subsetMaterialArray, //index value of material for each subset std::vector<SurfaceMaterial>& material, //vector of material structures int& subsetCount, //Number of subsets in mesh bool isRHCoordSys, //true if model was created in right hand coord system bool computeNormals, //true to compute the normals, false to use the files normals std::vector<XMFLOAT3> &AABB); //Objects AABB (Axis-Aligned Bounding Box) struct Light { Light() { ZeroMemory(this, sizeof(Light)); } XMFLOAT3 pos; float range; XMFLOAT3 dir; float cone; XMFLOAT3 att; float pad2; XMFLOAT4 ambient; XMFLOAT4 diffuse; }; Light light; struct cbPerFrame { Light light; }; cbPerFrame constbuffPerFrame; struct Vertex //Overloaded Vertex Structure { Vertex(){} Vertex(float x, float y, float z, float u, float v, float nx, float ny, float nz, float tx, float ty, float tz) : pos(x,y,z), texCoord(u, v), normal(nx, ny, nz), tangent(tx, ty, tz){} XMFLOAT3 pos; XMFLOAT2 texCoord; XMFLOAT3 normal; XMFLOAT3 tangent; XMFLOAT3 biTangent; // Will not be sent to shader int StartWeight; int WeightCount; }; D3D11_INPUT_ELEMENT_DESC layout[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 20, D3D11_INPUT_PER_VERTEX_DATA, 0}, { "TANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 32, D3D11_INPUT_PER_VERTEX_DATA, 0}, // Instance elements // last parameter (InstanceDataStepRate) is one because we will "step" to the next instance element (INSTANCEPOS) after drawing 1 instance (tree) { "INSTANCEPOS", 0, DXGI_FORMAT_R32G32B32_FLOAT, 1, 0, D3D11_INPUT_PER_INSTANCE_DATA, 1} }; UINT numElements = ARRAYSIZE(layout); D3D11_INPUT_ELEMENT_DESC leafLayout[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 20, D3D11_INPUT_PER_VERTEX_DATA, 0}, { "TANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 32, D3D11_INPUT_PER_VERTEX_DATA, 0}, // Instance elements // last parameter (InstanceDataStepRate) is set to the number of leaves per tree. InstanceDataStepRate is the number // of instances to draw before moving on to the next element in the instance buffer, in this case, the next tree position. // We want to make sure that ALL the leaves are drawn for the current tree before moving to the next trees position { "INSTANCEPOS", 0, DXGI_FORMAT_R32G32B32_FLOAT, 1, 0, D3D11_INPUT_PER_INSTANCE_DATA, numLeavesPerTree} }; UINT numLeafElements = ARRAYSIZE(leafLayout); struct Joint { std::wstring name; int parentID; XMFLOAT3 pos; XMFLOAT4 orientation; }; struct BoundingBox { XMFLOAT3 min; XMFLOAT3 max; }; struct FrameData { int frameID; std::vector<float> frameData; }; struct AnimJointInfo { std::wstring name; int parentID; int flags; int startIndex; }; struct ModelAnimation { int numFrames; int numJoints; int frameRate; int numAnimatedComponents; float frameTime; float totalAnimTime; float currAnimTime; std::vector<AnimJointInfo> jointInfo; std::vector<BoundingBox> frameBounds; std::vector<Joint> baseFrameJoints; std::vector<FrameData> frameData; std::vector<std::vector<Joint>> frameSkeleton; }; struct Weight { int jointID; float bias; XMFLOAT3 pos; XMFLOAT3 normal; }; struct ModelSubset { int texArrayIndex; int numTriangles; std::vector<Vertex> vertices; std::vector<XMFLOAT3> jointSpaceNormals; std::vector<DWORD> indices; std::vector<Weight> weights; std::vector<XMFLOAT3> positions; ID3D11Buffer* vertBuff; ID3D11Buffer* indexBuff; }; struct Model3D { int numSubsets; int numJoints; std::vector<Joint> joints; std::vector<ModelSubset> subsets; std::vector<ModelAnimation> animations; }; Model3D NewMD5Model; // Function Prototypes // bool InitializeDirect3d11App(HINSTANCE hInstance); void CleanUp(); bool InitScene(); void DrawScene(); bool InitD2D_D3D101_DWrite(IDXGIAdapter1 *Adapter); void InitD2DScreenTexture(); void UpdateScene(double time); void UpdateCamera(); void RenderText(std::wstring text, int inInt); void StartTimer(); double GetTime(); double GetFrameTime(); bool InitializeWindow(HINSTANCE hInstance, int ShowWnd, int width, int height, bool windowed); int messageloop(); bool InitDirectInput(HINSTANCE hInstance); void DetectInput(double time); void CreateSphere(int LatLines, int LongLines); LRESULT CALLBACK WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam); //LoadMD5Model() function prototype bool LoadMD5Model(std::wstring filename, Model3D& MD5Model, std::vector<ID3D11ShaderResourceView*>& shaderResourceViewArray, std::vector<std::wstring> texFileNameArray); bool LoadMD5Anim(std::wstring filename, Model3D& MD5Model); void UpdateMD5Model(Model3D& MD5Model, float deltaTime, int animation); /************************************New Stuff****************************************************/ // Culling Functions std::vector<XMFLOAT3> CreateAABB(std::vector<XMFLOAT3> &vertPosArray); void cullAABB(std::vector<XMFLOAT4> &frustumPlanes); std::vector<XMFLOAT4> getFrustumPlanes(XMMATRIX& viewProj); /*************************************************************************************************/ main.cpp /************************************New Stuff****************************************************/ #include "main.h" std::vector<XMFLOAT4> getFrustumPlanes(XMMATRIX& viewProj) { // x, y, z, and w represent A, B, C and D in the plane equation // where ABC are the xyz of the planes normal, and D is the plane constant std::vector<XMFLOAT4> tempFrustumPlane(6); // Left Frustum Plane // Add first column of the matrix to the fourth column tempFrustumPlane[0].x = viewProj._14 + viewProj._11; tempFrustumPlane[0].y = viewProj._24 + viewProj._21; tempFrustumPlane[0].z = viewProj._34 + viewProj._31; tempFrustumPlane[0].w = viewProj._44 + viewProj._41; // Right Frustum Plane // Subtract first column of matrix from the fourth column tempFrustumPlane[1].x = viewProj._14 - viewProj._11; tempFrustumPlane[1].y = viewProj._24 - viewProj._21; tempFrustumPlane[1].z = viewProj._34 - viewProj._31; tempFrustumPlane[1].w = viewProj._44 - viewProj._41; // Top Frustum Plane // Subtract second column of matrix from the fourth column tempFrustumPlane[2].x = viewProj._14 - viewProj._12; tempFrustumPlane[2].y = viewProj._24 - viewProj._22; tempFrustumPlane[2].z = viewProj._34 - viewProj._32; tempFrustumPlane[2].w = viewProj._44 - viewProj._42; // Bottom Frustum Plane // Add second column of the matrix to the fourth column tempFrustumPlane[3].x = viewProj._14 + viewProj._12; tempFrustumPlane[3].y = viewProj._24 + viewProj._22; tempFrustumPlane[3].z = viewProj._34 + viewProj._32; tempFrustumPlane[3].w = viewProj._44 + viewProj._42; // Near Frustum Plane // We could add the third column to the fourth column to get the near plane, // but we don't have to do this because the third column IS the near plane tempFrustumPlane[4].x = viewProj._13; tempFrustumPlane[4].y = viewProj._23; tempFrustumPlane[4].z = viewProj._33; tempFrustumPlane[4].w = viewProj._43; // Far Frustum Plane // Subtract third column of matrix from the fourth column tempFrustumPlane[5].x = viewProj._14 - viewProj._13; tempFrustumPlane[5].y = viewProj._24 - viewProj._23; tempFrustumPlane[5].z = viewProj._34 - viewProj._33; tempFrustumPlane[5].w = viewProj._44 - viewProj._43; // Normalize plane normals (A, B and C (xyz)) // Also take note that planes face inward for(int i = 0; i < 6; ++i) { float length = sqrt((tempFrustumPlane[i].x * tempFrustumPlane[i].x) + (tempFrustumPlane[i].y * tempFrustumPlane[i].y) + (tempFrustumPlane[i].z * tempFrustumPlane[i].z)); tempFrustumPlane[i].x /= length; tempFrustumPlane[i].y /= length; tempFrustumPlane[i].z /= length; tempFrustumPlane[i].w /= length; } return tempFrustumPlane; } void cullAABB(std::vector<XMFLOAT4> &frustumPlanes) { // This is where we will check all objects for culling. In this lesson, we are only culling the trees, so if the tree is culled, // we will not draw it OR it's leaves. You can add other objects in your scene, and check them for culling here // Initialize numTreesToDraw numTreesToDraw = 0; // Create a temporary array to get the tree instance data out std::vector<InstanceData> tempTreeInstDat(numTrees); bool cull = false; // We'll start by looping through each tree for(int i = 0; i < numTrees; ++i) { cull = false; // Loop through each frustum plane for(int planeID = 0; planeID < 6; ++planeID) { XMVECTOR planeNormal = XMVectorSet(frustumPlanes[planeID].x, frustumPlanes[planeID].y, frustumPlanes[planeID].z, 0.0f); float planeConstant = frustumPlanes[planeID].w; // Check each axis (x,y,z) to get the AABB vertex furthest away from the direction the plane is facing (plane normal) XMFLOAT3 axisVert; // x-axis if(frustumPlanes[planeID].x < 0.0f) // Which AABB vertex is furthest down (plane normals direction) the x axis axisVert.x = treeAABB[0].x + treeInstanceData[i].pos.x; // min x plus tree positions x else axisVert.x = treeAABB[1].x + treeInstanceData[i].pos.x; // max x plus tree positions x // y-axis if(frustumPlanes[planeID].y < 0.0f) // Which AABB vertex is furthest down (plane normals direction) the y axis axisVert.y = treeAABB[0].y + treeInstanceData[i].pos.y; // min y plus tree positions y else axisVert.y = treeAABB[1].y + treeInstanceData[i].pos.y; // max y plus tree positions y // z-axis if(frustumPlanes[planeID].z < 0.0f) // Which AABB vertex is furthest down (plane normals direction) the z axis axisVert.z = treeAABB[0].z + treeInstanceData[i].pos.z; // min z plus tree positions z else axisVert.z = treeAABB[1].z + treeInstanceData[i].pos.z; // max z plus tree positions z // Now we get the signed distance from the AABB vertex that's furthest down the frustum planes normal, // and if the signed distance is negative, then the entire bounding box is behind the frustum plane, which means // that it should be culled if(XMVectorGetX(XMVector3Dot(planeNormal, XMLoadFloat3(&axisVert))) + planeConstant < 0.0f) { cull = true; // Skip remaining planes to check and move on to next tree break; } } if(!cull) // If the object was not culled { // Set the treesToDrawIndex in the constant buffer. We are rearanging the tree instance positions, so that the trees // that will be drawn have their positions first. This way, when the GPU loops through the instances, it will first // get all the tree positions that we want to draw. We are not going to have the GPU draw all 4000 trees, only the couple // that are in the view frustum, so we want those tree positions to be the first ones in the instance buffer array tempTreeInstDat[numTreesToDraw].pos = treeInstanceData[i].pos; // Add one to the number of trees to draw numTreesToDraw++; } } // Update our instance buffer with our new (newly ordered) array of tree instance data (positions) d3d11DevCon->UpdateSubresource( treeInstanceBuff, 0, NULL, &tempTreeInstDat[0], 0, 0 ); } std::vector<XMFLOAT3> CreateAABB(std::vector<XMFLOAT3> &vertPosArray) { XMFLOAT3 minVertex = XMFLOAT3(FLT_MAX, FLT_MAX, FLT_MAX); XMFLOAT3 maxVertex = XMFLOAT3(-FLT_MAX, -FLT_MAX, -FLT_MAX); for(UINT i = 0; i < vertPosArray.size(); i++) { // The minVertex and maxVertex will most likely not be actual vertices in the model, but vertices // that use the smallest and largest x, y, and z values from the model to be sure ALL vertices are // covered by the bounding volume //Get the smallest vertex minVertex.x = min(minVertex.x, vertPosArray[i].x); // Find smallest x value in model minVertex.y = min(minVertex.y, vertPosArray[i].y); // Find smallest y value in model minVertex.z = min(minVertex.z, vertPosArray[i].z); // Find smallest z value in model //Get the largest vertex maxVertex.x = max(maxVertex.x, vertPosArray[i].x); // Find largest x value in model maxVertex.y = max(maxVertex.y, vertPosArray[i].y); // Find largest y value in model maxVertex.z = max(maxVertex.z, vertPosArray[i].z); // Find largest z value in model } std::vector<XMFLOAT3> AABB; // Our AABB [0] is the min vertex and [1] is the max AABB.push_back(minVertex); AABB.push_back(maxVertex); return AABB; } /*************************************************************************************************/ bool InitScene() { InitD2DScreenTexture(); CreateSphere(10, 10); std::vector<XMFLOAT3> tempAABB; if(!LoadObjModel(L"ground.obj", &meshVertBuff, &meshIndexBuff, meshSubsetIndexStart, meshSubsetTexture, material, meshSubsets, true, true, tempAABB)) return false; /************************************New Stuff****************************************************/ // Load in our tree model if(!LoadObjModel(L"tree.obj", &treeVertBuff, &treeIndexBuff, treeSubsetIndexStart, treeSubsetTexture, material, treeSubsets, true, true, treeAABB)) return false; /*************************************************************************************************/ // Set up the tree positions then instance buffer XMVECTOR tempPos; srand(100); // We are just creating random positions for the trees, between the positions of (-100, 0, -100) to (100, 0, 100) // then storing the position in our instanceData array for(int i = 0; i < numTrees; i++) { float randX = ((float)(rand() % 20000) / 10) - 1000; float randZ = ((float)(rand() % 20000) / 10) - 1000; tempPos = XMVectorSet(randX, 0.0f, randZ, 0.0f); XMStoreFloat3(&treeInstanceData[i].pos, tempPos); } // Create our trees instance buffer // Pretty much the same thing as a regular vertex buffer, except that this buffers data // will be used per "instance" instead of per "vertex". Each instance of the geometry // gets it's own instanceData data, similar to how each vertex of the geometry gets its own // Vertex data D3D11_BUFFER_DESC instBuffDesc; ZeroMemory( &instBuffDesc, sizeof(instBuffDesc) ); instBuffDesc.Usage = D3D11_USAGE_DEFAULT; instBuffDesc.ByteWidth = sizeof( InstanceData ) * numTrees; instBuffDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; instBuffDesc.CPUAccessFlags = 0; instBuffDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA instData; ZeroMemory( &instData, sizeof(instData) ); instData.pSysMem = &treeInstanceData[0]; hr = d3d11Device->CreateBuffer( &instBuffDesc, &instData, &treeInstanceBuff); // The tree's world matrix (We will keep it an identity matrix, but we could change their positions without // unrealistic effects, since remember that all transformations are done around the point (0,0,0), and we will // be applying this world matrix to our trees AFTER they have been individually positioned depending on the // instance buffer, which means they will not be centered at the point (0,0,0)) treeWorld = XMMatrixIdentity(); if(!LoadMD5Model(L"Female.md5mesh", NewMD5Model, meshSRV, textureNameArray)) return false; if(!LoadMD5Anim(L"Female.md5anim", NewMD5Model)) return false; // Create Leaf geometry (quad) Vertex v[] = { // Front Face Vertex(-1.0f, -1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex(-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex( 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex( 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f), }; DWORD indices[] = { // Front Face 0, 1, 2, 0, 2, 3, }; D3D11_BUFFER_DESC indexBufferDesc; ZeroMemory( &indexBufferDesc, sizeof(indexBufferDesc) ); indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(DWORD) * 2 * 3; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = indices; d3d11Device->CreateBuffer(&indexBufferDesc, &iinitData, &quadIndexBuffer); D3D11_BUFFER_DESC vertexBufferDesc; ZeroMemory( &vertexBufferDesc, sizeof(vertexBufferDesc) ); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.ByteWidth = sizeof( Vertex ) * 4; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; ZeroMemory( &vertexBufferData, sizeof(vertexBufferData) ); vertexBufferData.pSysMem = v; hr = d3d11Device->CreateBuffer( &vertexBufferDesc, &vertexBufferData, &quadVertBuffer); // Now we load in the leaf texture hr = D3DX11CreateShaderResourceViewFromFile( d3d11Device, L"leaf.png", NULL, NULL, &leafTexture, NULL ); // Here we create the leaf world matrices, that will be the leafs // position and orientation on the tree each individual tree. We will create an array of matrices // for the leaves that we will send to the shaders in the cbPerInstance constant buffer // This matrix array is used "per tree", so that each tree gets the exact same number of leaves, // with the same orientation, position, and scale as all of the other trees // Start by initializing the matrix array srand(100); XMFLOAT3 fTPos; XMMATRIX rotationMatrix; XMMATRIX tempMatrix; for(int i = 0; i < numLeavesPerTree; i++) { float rotX =(rand() % 2000) / 500.0f; // Value between 0 and 4 PI (two circles, makes it slightly more mixed) float rotY = (rand() % 2000) / 500.0f; float rotZ = (rand() % 2000) / 500.0f; // the rand() function is slightly more biased towards lower numbers, which would make the center of // the leaf "mass" be more dense with leaves than the outside of the "sphere" of leaves we are making. // We want the outside of the "sphere" of leaves to be more dense than the inside, so the way we do this // is getting a distance value between 0 and 4, we then subtract that value from 6, so that the very center // does not have any leaves. then below you can see we are checking to see if the distance is greater than 4 // (because the tree branches are approximately 4 units radius from the center of the tree). If the distance // is greater than 4, then we set it at 4, which will make the edge of the "sphere" of leaves more densly // populated than the center of the leaf mass float distFromCenter = 6.0f - ((rand() % 1000) / 250.0f); if(distFromCenter > 4.0f) distFromCenter = 4.0f; // Now we create a vector with the length of distFromCenter, by simply setting it's x component as distFromCenter. // We will now rotate the vector, which will give us the "sphere" of leaves after we have rotated all the leaves. // We do not want a perfect sphere, more like a half sphere to cover the branches, so we check to see if the y // value is less than -1.0f (giving us slightly more than half a sphere), and if it is, negate it so it is reflected // across the xz plane tempPos = XMVectorSet(distFromCenter, 0.0f, 0.0f, 0.0f); rotationMatrix = XMMatrixRotationRollPitchYaw(rotX, rotY, rotZ); tempPos = XMVector3TransformCoord(tempPos, rotationMatrix ); if(XMVectorGetY(tempPos) < -1.0f) tempPos = XMVectorSetY(tempPos, -XMVectorGetY(tempPos)); // Now we create our leaves "tree" matrix (this is not the leaves "world matrix", because we are not // defining the leaves position, orientation, and scale in world space, but instead in "tree" space XMStoreFloat3(&fTPos, tempPos); Scale = XMMatrixScaling( 0.25f, 0.25f, 0.25f ); Translation = XMMatrixTranslation(fTPos.x, fTPos.y + 8.0f, fTPos.z ); tempMatrix = Scale * rotationMatrix * Translation; // To make things simple, we just store the matrix directly into our cbPerInst structure cbPerInst.leafOnTree[i] = XMMatrixTranspose(tempMatrix); } //Compile Shaders from shader file hr = D3DX11CompileFromFile(L"Effects.fx", 0, 0, "VS", "vs_4_0", 0, 0, 0, &VS_Buffer, 0, 0); hr = D3DX11CompileFromFile(L"Effects.fx", 0, 0, "PS", "ps_4_0", 0, 0, 0, &PS_Buffer, 0, 0); hr = D3DX11CompileFromFile(L"Effects.fx", 0, 0, "D2D_PS", "ps_4_0", 0, 0, 0, &D2D_PS_Buffer, 0, 0); hr = D3DX11CompileFromFile(L"Effects.fx", 0, 0, "SKYMAP_VS", "vs_4_0", 0, 0, 0, &SKYMAP_VS_Buffer, 0, 0); hr = D3DX11CompileFromFile(L"Effects.fx", 0, 0, "SKYMAP_PS", "ps_4_0", 0, 0, 0, &SKYMAP_PS_Buffer, 0, 0); //Create the Shader Objects hr = d3d11Device->CreateVertexShader(VS_Buffer->GetBufferPointer(), VS_Buffer->GetBufferSize(), NULL, &VS); hr = d3d11Device->CreatePixelShader(PS_Buffer->GetBufferPointer(), PS_Buffer->GetBufferSize(), NULL, &PS); hr = d3d11Device->CreatePixelShader(D2D_PS_Buffer->GetBufferPointer(), D2D_PS_Buffer->GetBufferSize(), NULL, &D2D_PS); hr = d3d11Device->CreateVertexShader(SKYMAP_VS_Buffer->GetBufferPointer(), SKYMAP_VS_Buffer->GetBufferSize(), NULL, &SKYMAP_VS); hr = d3d11Device->CreatePixelShader(SKYMAP_PS_Buffer->GetBufferPointer(), SKYMAP_PS_Buffer->GetBufferSize(), NULL, &SKYMAP_PS); //Set Vertex and Pixel Shaders d3d11DevCon->VSSetShader(VS, 0, 0); d3d11DevCon->PSSetShader(PS, 0, 0); light.pos = XMFLOAT3(0.0f, 7.0f, 0.0f); light.dir = XMFLOAT3(-0.5f, 0.75f, -0.5f); light.range = 1000.0f; light.cone = 12.0f; light.att = XMFLOAT3(0.4f, 0.02f, 0.000f); light.ambient = XMFLOAT4(0.2f, 0.2f, 0.2f, 1.0f); light.diffuse = XMFLOAT4(1.0f, 1.0f, 1.0f, 1.0f); //Create the Input Layout hr = d3d11Device->CreateInputLayout( layout, numElements, VS_Buffer->GetBufferPointer(), VS_Buffer->GetBufferSize(), &vertLayout ); // Create the leaf Input Layout. We create a second layout for the leaves because the instance // element used for the positions is different than the instance element used for the positions // when drawing the trees. We want to only move to the next element in the instance buffer // AFTER we have drawn ALL the leaves for the current tree hr = d3d11Device->CreateInputLayout( leafLayout, numLeafElements, VS_Buffer->GetBufferPointer(), VS_Buffer->GetBufferSize(), &leafVertLayout ); //Set the Input Layout d3d11DevCon->IASetInputLayout( vertLayout ); //Set Primitive Topology d3d11DevCon->IASetPrimitiveTopology( D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST ); //Create the Viewport D3D11_VIEWPORT viewport; ZeroMemory(&viewport, sizeof(D3D11_VIEWPORT)); viewport.TopLeftX = 0; viewport.TopLeftY = 0; viewport.Width = Width; viewport.Height = Height; viewport.MinDepth = 0.0f; viewport.MaxDepth = 1.0f; //Set the Viewport d3d11DevCon->RSSetViewports(1, &viewport); //Create the buffer to send to the cbuffer in effect file D3D11_BUFFER_DESC cbbd; ZeroMemory(&cbbd, sizeof(D3D11_BUFFER_DESC)); cbbd.Usage = D3D11_USAGE_DEFAULT; cbbd.ByteWidth = sizeof(cbPerObject); cbbd.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbbd.CPUAccessFlags = 0; cbbd.MiscFlags = 0; hr = d3d11Device->CreateBuffer(&cbbd, NULL, &cbPerObjectBuffer); //Create the buffer to send to the cbuffer per frame in effect file ZeroMemory(&cbbd, sizeof(D3D11_BUFFER_DESC)); cbbd.Usage = D3D11_USAGE_DEFAULT; cbbd.ByteWidth = sizeof(cbPerFrame); cbbd.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbbd.CPUAccessFlags = 0; cbbd.MiscFlags = 0; hr = d3d11Device->CreateBuffer(&cbbd, NULL, &cbPerFrameBuffer); //Create the buffer to send to the cbuffer per instance in effect file ZeroMemory(&cbbd, sizeof(D3D11_BUFFER_DESC)); cbbd.Usage = D3D11_USAGE_DEFAULT; // We have already defined how many elements are in our leaf matrix array inside the cbPerScene structure, // so we only need the size of the entire structure here, because the number of leaves per tree will not // change throughout the scene. cbbd.ByteWidth = sizeof(cbPerScene); cbbd.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbbd.CPUAccessFlags = 0; cbbd.MiscFlags = 0; hr = d3d11Device->CreateBuffer(&cbbd, NULL, &cbPerInstanceBuffer); // Now we set the constant buffer per instance (used only for the leaves in this lesson) // We are sending this buffer to the GPU now, because it will not be updated throughout the scene, // so it would be a waste of time to be sending this to the GPU every frame, when we only have to // send it once per scene. This is why constant buffers should be separated depending on how often // they are updated, so that you do not send data to the GPU more often than you have to. It's a // performance thing ;) d3d11DevCon->UpdateSubresource( cbPerInstanceBuffer, 0, NULL, &cbPerInst, 0, 0); Scale = XMMatrixScaling( 0.25f, 0.25f, 0.25f ); // The model is a bit too large for our scene, so make it smaller Translation = XMMatrixTranslation( 0.0f, 0.0f, 0.0f); playerCharWorld = Scale * Translation; //Camera information camPosition = XMVectorSet( 0.0f, 10.0f, 8.0f, 0.0f ); camTarget = XMVectorSet( 0.0f, 3.0f, 0.0f, 0.0f ); camUp = XMVectorSet( 0.0f, 1.0f, 0.0f, 0.0f ); //Set the View matrix camView = XMMatrixLookAtLH( camPosition, camTarget, camUp ); /************************************New Stuff****************************************************/ //Set the Projection matrix camProjection = XMMatrixPerspectiveFovLH( 3.14f/4.0f, (float)Width/Height, 1.0f, 200.0f); /*************************************************************************************************/ D3D11_BLEND_DESC blendDesc; ZeroMemory( &blendDesc, sizeof(blendDesc) ); D3D11_RENDER_TARGET_BLEND_DESC rtbd; ZeroMemory( &rtbd, sizeof(rtbd) ); rtbd.BlendEnable = true; rtbd.SrcBlend = D3D11_BLEND_SRC_COLOR; rtbd.DestBlend = D3D11_BLEND_INV_SRC_ALPHA; rtbd.BlendOp = D3D11_BLEND_OP_ADD; rtbd.SrcBlendAlpha = D3D11_BLEND_ONE; rtbd.DestBlendAlpha = D3D11_BLEND_ZERO; rtbd.BlendOpAlpha = D3D11_BLEND_OP_ADD; rtbd.RenderTargetWriteMask = D3D10_COLOR_WRITE_ENABLE_ALL; blendDesc.AlphaToCoverageEnable = false; blendDesc.RenderTarget[0] = rtbd; d3d11Device->CreateBlendState(&blendDesc, &d2dTransparency); ZeroMemory( &rtbd, sizeof(rtbd) ); rtbd.BlendEnable = true; rtbd.SrcBlend = D3D11_BLEND_INV_SRC_ALPHA; rtbd.DestBlend = D3D11_BLEND_SRC_ALPHA; rtbd.BlendOp = D3D11_BLEND_OP_ADD; rtbd.SrcBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA; rtbd.DestBlendAlpha = D3D11_BLEND_SRC_ALPHA; rtbd.BlendOpAlpha = D3D11_BLEND_OP_ADD; rtbd.RenderTargetWriteMask = D3D10_COLOR_WRITE_ENABLE_ALL; blendDesc.AlphaToCoverageEnable = false; blendDesc.RenderTarget[0] = rtbd; d3d11Device->CreateBlendState(&blendDesc, &Transparency); ZeroMemory( &rtbd, sizeof(rtbd) ); rtbd.BlendEnable = true; rtbd.SrcBlend = D3D11_BLEND_INV_SRC_ALPHA; rtbd.DestBlend = D3D11_BLEND_SRC_ALPHA; rtbd.BlendOp = D3D11_BLEND_OP_ADD; rtbd.SrcBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA; rtbd.DestBlendAlpha = D3D11_BLEND_SRC_ALPHA; rtbd.BlendOpAlpha = D3D11_BLEND_OP_ADD; rtbd.RenderTargetWriteMask = D3D10_COLOR_WRITE_ENABLE_ALL; blendDesc.AlphaToCoverageEnable = true; blendDesc.RenderTarget[0] = rtbd; d3d11Device->CreateBlendState(&blendDesc, &leafTransparency); ///Load Skymap's cube texture/// D3DX11_IMAGE_LOAD_INFO loadSMInfo; loadSMInfo.MiscFlags = D3D11_RESOURCE_MISC_TEXTURECUBE; ID3D11Texture2D* SMTexture = 0; hr = D3DX11CreateTextureFromFile(d3d11Device, L"skymap.dds", &loadSMInfo, 0, (ID3D11Resource**)&SMTexture, 0); if(FAILED(hr)) { SwapChain->SetFullscreenState(false, NULL); // Make sure we are out of fullscreen // create message std::wstring message = L"Could not open: skymap.dds. Please visit Braynzar Vision to download the Sky Map"; MessageBox(0, message.c_str(), // display message L"Error", MB_OK); return false; } D3D11_TEXTURE2D_DESC SMTextureDesc; SMTexture->GetDesc(&SMTextureDesc); D3D11_SHADER_RESOURCE_VIEW_DESC SMViewDesc; SMViewDesc.Format = SMTextureDesc.Format; SMViewDesc.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE; SMViewDesc.TextureCube.MipLevels = SMTextureDesc.MipLevels; SMViewDesc.TextureCube.MostDetailedMip = 0; hr = d3d11Device->CreateShaderResourceView(SMTexture, &SMViewDesc, &smrv); // Describe the Sample State D3D11_SAMPLER_DESC sampDesc; ZeroMemory( &sampDesc, sizeof(sampDesc) ); sampDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR; sampDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP; sampDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP; sampDesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP; sampDesc.ComparisonFunc = D3D11_COMPARISON_NEVER; sampDesc.MinLOD = 0; sampDesc.MaxLOD = D3D11_FLOAT32_MAX; //Create the Sample State hr = d3d11Device->CreateSamplerState( &sampDesc, &CubesTexSamplerState ); D3D11_RASTERIZER_DESC cmdesc; ZeroMemory(&cmdesc, sizeof(D3D11_RASTERIZER_DESC)); cmdesc.FillMode = D3D11_FILL_SOLID; cmdesc.CullMode = D3D11_CULL_BACK; cmdesc.FrontCounterClockwise = true; hr = d3d11Device->CreateRasterizerState(&cmdesc, &CCWcullMode); cmdesc.FrontCounterClockwise = false; hr = d3d11Device->CreateRasterizerState(&cmdesc, &CWcullMode); cmdesc.CullMode = D3D11_CULL_NONE; //cmdesc.FillMode = D3D11_FILL_WIREFRAME; hr = d3d11Device->CreateRasterizerState(&cmdesc, &RSCullNone); D3D11_DEPTH_STENCIL_DESC dssDesc; ZeroMemory(&dssDesc, sizeof(D3D11_DEPTH_STENCIL_DESC)); dssDesc.DepthEnable = true; dssDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL; dssDesc.DepthFunc = D3D11_COMPARISON_LESS_EQUAL; d3d11Device->CreateDepthStencilState(&dssDesc, &DSLessEqual); return true; } void DrawScene() { //Clear our render target and depth/stencil view float bgColor[4] = { 0.5f, 0.5f, 0.5f, 1.0f }; d3d11DevCon->ClearRenderTargetView(renderTargetView, bgColor); d3d11DevCon->ClearDepthStencilView(depthStencilView, D3D11_CLEAR_DEPTH|D3D11_CLEAR_STENCIL, 1.0f, 0); constbuffPerFrame.light = light; d3d11DevCon->UpdateSubresource( cbPerFrameBuffer, 0, NULL, &constbuffPerFrame, 0, 0 ); d3d11DevCon->PSSetConstantBuffers(0, 1, &cbPerFrameBuffer); //Set our Render Target d3d11DevCon->OMSetRenderTargets( 1, &renderTargetView, depthStencilView ); //Set the default blend state (no blending) for opaque objects d3d11DevCon->OMSetBlendState(0, 0, 0xffffffff); // Set vertex buffer and pixel shader d3d11DevCon->VSSetShader(VS, 0, 0); d3d11DevCon->PSSetShader(PS, 0, 0); /************************************New Stuff****************************************************/ cullAABB(getFrustumPlanes(camView * camProjection)); /*************************************************************************************************/ ///***Draw INSTANCED Leaf Models***/// // We are now binding two buffers to the input assembler, one for the vertex data, // and one for the instance data, so we will have to create a strides array, offsets array // and buffer array. UINT strides[2] = {sizeof( Vertex ), sizeof( InstanceData )}; UINT offsets[2] = {0, 0}; // Store the vertex and instance buffers into an array // The leaves will use the same instance buffer as the trees, because we need each leaf // to go to a certain tree ID3D11Buffer* vertInstBuffers[2] = {quadVertBuffer, treeInstanceBuff}; // Set the leaf input layout. This is where we will set our special input layout for our leaves d3d11DevCon->IASetInputLayout( leafVertLayout ); //Set the models index buffer (same as before) d3d11DevCon->IASetIndexBuffer(quadIndexBuffer, DXGI_FORMAT_R32_UINT, 0); //Set the models vertex and isntance buffer using the arrays created above d3d11DevCon->IASetVertexBuffers( 0, 2, vertInstBuffers, strides, offsets ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = treeWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(treeWorld); cbPerObj.hasTexture = true; // We'll assume all md5 subsets have textures cbPerObj.hasNormMap = false; // We'll also assume md5 models have no normal map (easy to change later though) cbPerObj.isInstance = true; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = true; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); // We are sending two constant buffers to the vertex shader now, wo we will create an array of them ID3D11Buffer* vsConstBuffers[2] = {cbPerObjectBuffer, cbPerInstanceBuffer}; d3d11DevCon->VSSetConstantBuffers( 0, 2, vsConstBuffers ); d3d11DevCon->PSSetConstantBuffers( 1, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetShaderResources( 0, 1, &leafTexture ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(RSCullNone); /************************************New Stuff****************************************************/ d3d11DevCon->DrawIndexedInstanced( 6, numLeavesPerTree * numTreesToDraw, 0, 0, 0 ); /*************************************************************************************************/ // Reset the default Input Layout d3d11DevCon->IASetInputLayout( vertLayout ); /////Draw our tree instances///// for(int i = 0; i < treeSubsets; ++i) { // Store the vertex and instance buffers into an array ID3D11Buffer* vertInstBuffers[2] = {treeVertBuff, treeInstanceBuff}; //Set the models index buffer (same as before) d3d11DevCon->IASetIndexBuffer(treeIndexBuff, DXGI_FORMAT_R32_UINT, 0); //Set the models vertex buffer d3d11DevCon->IASetVertexBuffers( 0, 2, vertInstBuffers, strides, offsets ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = treeWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(treeWorld); cbPerObj.difColor = material[treeSubsetTexture[i]].difColor; cbPerObj.hasTexture = material[treeSubsetTexture[i]].hasTexture; cbPerObj.hasNormMap = material[treeSubsetTexture[i]].hasNormMap; cbPerObj.isInstance = true; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = false; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetConstantBuffers( 1, 1, &cbPerObjectBuffer ); if(material[treeSubsetTexture[i]].hasTexture) d3d11DevCon->PSSetShaderResources( 0, 1, &meshSRV[material[treeSubsetTexture[i]].texArrayIndex] ); if(material[treeSubsetTexture[i]].hasNormMap) d3d11DevCon->PSSetShaderResources( 1, 1, &meshSRV[material[treeSubsetTexture[i]].normMapTexArrayIndex] ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(RSCullNone); int indexStart = treeSubsetIndexStart[i]; int indexDrawAmount = treeSubsetIndexStart[i+1] - treeSubsetIndexStart[i]; if(!material[meshSubsetTexture[i]].transparent) /************************************New Stuff****************************************************/ d3d11DevCon->DrawIndexedInstanced( indexDrawAmount, numTreesToDraw, indexStart, 0, 0 ); /*************************************************************************************************/ } //Set Vertex and Pixel Shaders d3d11DevCon->VSSetShader(VS, 0, 0); d3d11DevCon->PSSetShader(PS, 0, 0); UINT stride = sizeof( Vertex ); UINT offset = 0; ///***Draw MD5 Model***/// for(int i = 0; i < NewMD5Model.numSubsets; i ++) { //Set the grounds index buffer d3d11DevCon->IASetIndexBuffer( NewMD5Model.subsets[i].indexBuff, DXGI_FORMAT_R32_UINT, 0); //Set the grounds vertex buffer d3d11DevCon->IASetVertexBuffers( 0, 1, &NewMD5Model.subsets[i].vertBuff, &stride, &offset ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = playerCharWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(playerCharWorld); cbPerObj.hasTexture = true; // We'll assume all md5 subsets have textures cbPerObj.hasNormMap = false; // We'll also assume md5 models have no normal map (easy to change later though) cbPerObj.isInstance = false; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = false; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetConstantBuffers( 1, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetShaderResources( 0, 1, &meshSRV[NewMD5Model.subsets[i].texArrayIndex] ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(RSCullNone); d3d11DevCon->DrawIndexed( NewMD5Model.subsets[i].indices.size(), 0, 0 ); } /////Draw our model's NON-transparent subsets///// for(int i = 0; i < meshSubsets; ++i) { //Set the grounds index buffer d3d11DevCon->IASetIndexBuffer( meshIndexBuff, DXGI_FORMAT_R32_UINT, 0); //Set the grounds vertex buffer d3d11DevCon->IASetVertexBuffers( 0, 1, &meshVertBuff, &stride, &offset ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = meshWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(meshWorld); cbPerObj.difColor = material[meshSubsetTexture[i]].difColor; cbPerObj.hasTexture = material[meshSubsetTexture[i]].hasTexture; cbPerObj.hasNormMap = material[meshSubsetTexture[i]].hasNormMap; cbPerObj.isInstance = false; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = false; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetConstantBuffers( 1, 1, &cbPerObjectBuffer ); if(material[meshSubsetTexture[i]].hasTexture) d3d11DevCon->PSSetShaderResources( 0, 1, &meshSRV[material[meshSubsetTexture[i]].texArrayIndex] ); if(material[meshSubsetTexture[i]].hasNormMap) d3d11DevCon->PSSetShaderResources( 1, 1, &meshSRV[material[meshSubsetTexture[i]].normMapTexArrayIndex] ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(RSCullNone); int indexStart = meshSubsetIndexStart[i]; int indexDrawAmount = meshSubsetIndexStart[i+1] - meshSubsetIndexStart[i]; if(!material[meshSubsetTexture[i]].transparent) d3d11DevCon->DrawIndexed( indexDrawAmount, indexStart, 0 ); } /////Draw the Sky's Sphere////// //Set the spheres index buffer d3d11DevCon->IASetIndexBuffer( sphereIndexBuffer, DXGI_FORMAT_R32_UINT, 0); //Set the spheres vertex buffer d3d11DevCon->IASetVertexBuffers( 0, 1, &sphereVertBuffer, &stride, &offset ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = sphereWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(sphereWorld); cbPerObj.isInstance = false; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = false; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); //Send our skymap resource view to pixel shader d3d11DevCon->PSSetShaderResources( 0, 1, &smrv ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); //Set the new VS and PS shaders d3d11DevCon->VSSetShader(SKYMAP_VS, 0, 0); d3d11DevCon->PSSetShader(SKYMAP_PS, 0, 0); //Set the new depth/stencil and RS states d3d11DevCon->OMSetDepthStencilState(DSLessEqual, 0); d3d11DevCon->RSSetState(RSCullNone); d3d11DevCon->DrawIndexed( NumSphereFaces * 3, 0, 0 ); //Set the default VS, PS shaders and depth/stencil state d3d11DevCon->VSSetShader(VS, 0, 0); d3d11DevCon->PSSetShader(PS, 0, 0); d3d11DevCon->OMSetDepthStencilState(NULL, 0); /////Draw our model's TRANSPARENT subsets now///// //Set our blend state d3d11DevCon->OMSetBlendState(Transparency, NULL, 0xffffffff); for(int i = 0; i < meshSubsets; ++i) { //Set the grounds index buffer d3d11DevCon->IASetIndexBuffer( meshIndexBuff, DXGI_FORMAT_R32_UINT, 0); //Set the grounds vertex buffer d3d11DevCon->IASetVertexBuffers( 0, 1, &meshVertBuff, &stride, &offset ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = meshWorld * camView * camProjection; cbPerObj.WVP = XMMatrixTranspose(WVP); cbPerObj.World = XMMatrixTranspose(meshWorld); cbPerObj.difColor = material[meshSubsetTexture[i]].difColor; cbPerObj.hasTexture = material[meshSubsetTexture[i]].hasTexture; cbPerObj.hasNormMap = material[meshSubsetTexture[i]].hasNormMap; cbPerObj.isInstance = false; // Tell shaders if this is instanced data so it will know to use instance data or not cbPerObj.isLeaf = false; // Tell shaders if this is the leaf instance so it will know to the cbPerInstance data or not d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetConstantBuffers( 1, 1, &cbPerObjectBuffer ); if(material[meshSubsetTexture[i]].hasTexture) d3d11DevCon->PSSetShaderResources( 0, 1, &meshSRV[material[meshSubsetTexture[i]].texArrayIndex] ); if(material[meshSubsetTexture[i]].hasNormMap) d3d11DevCon->PSSetShaderResources( 1, 1, &meshSRV[material[meshSubsetTexture[i]].normMapTexArrayIndex] ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(RSCullNone); int indexStart = meshSubsetIndexStart[i]; int indexDrawAmount = meshSubsetIndexStart[i+1] - meshSubsetIndexStart[i]; if(material[meshSubsetTexture[i]].transparent) d3d11DevCon->DrawIndexed( indexDrawAmount, indexStart, 0 ); } RenderText(L"FPS: ", fps); //Present the backbuffer to the screen SwapChain->Present(0, 0); } void RenderText(std::wstring text, int inInt) { d3d11DevCon->PSSetShader(D2D_PS, 0, 0); //Release the D3D 11 Device keyedMutex11->ReleaseSync(0); //Use D3D10.1 device keyedMutex10->AcquireSync(0, 5); //Draw D2D content D2DRenderTarget->BeginDraw(); //Clear D2D Background D2DRenderTarget->Clear(D2D1::ColorF(0.0f, 0.0f, 0.0f, 0.0f)); //Create our string std::wostringstream printString; /************************************New Stuff****************************************************/ printString << text << inInt << L"\n" << L"Num Trees To Draw: " << numTreesToDraw; /*************************************************************************************************/ printText = printString.str(); //Set the Font Color D2D1_COLOR_F FontColor = D2D1::ColorF(1.0f, 1.0f, 1.0f, 1.0f); //Set the brush color D2D will use to draw with Brush->SetColor(FontColor); //Create the D2D Render Area D2D1_RECT_F layoutRect = D2D1::RectF(0, 0, Width, Height); //Draw the Text D2DRenderTarget->DrawText( printText.c_str(), wcslen(printText.c_str()), TextFormat, layoutRect, Brush ); D2DRenderTarget->EndDraw(); //Release the D3D10.1 Device keyedMutex10->ReleaseSync(1); //Use the D3D11 Device keyedMutex11->AcquireSync(1, 5); //Use the shader resource representing the direct2d render target //to texture a square which is rendered in screen space so it //overlays on top of our entire scene. We use alpha blending so //that the entire background of the D2D render target is "invisible", //And only the stuff we draw with D2D will be visible (the text) //Set the blend state for D2D render target texture objects d3d11DevCon->OMSetBlendState(d2dTransparency, NULL, 0xffffffff); //Set the d2d Index buffer d3d11DevCon->IASetIndexBuffer( d2dIndexBuffer, DXGI_FORMAT_R32_UINT, 0); //Set the d2d vertex buffer UINT stride = sizeof( Vertex ); UINT offset = 0; d3d11DevCon->IASetVertexBuffers( 0, 1, &d2dVertBuffer, &stride, &offset ); WVP = XMMatrixIdentity(); cbPerObj.WVP = XMMatrixTranspose(WVP); d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetShaderResources( 0, 1, &d2dTexture ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(CWcullMode); d3d11DevCon->DrawIndexed( 6, 0, 0 ); } void MoveChar(double time, XMVECTOR& destinationDirection, XMMATRIX& worldMatrix) { // Normalize our destinated direction vector destinationDirection = XMVector3Normalize(destinationDirection); // If character is currently facing the complete opposite direction as the desired direction // they will turn around VERY slowly, so we want to make sure they turn around at a normal speed // by making the old character direction not the exact opposite direction as the current character // position. Try commenting out the next two lines to see what i'm talking about if(XMVectorGetX(XMVector3Dot(destinationDirection, oldCharDirection)) == -1) oldCharDirection += XMVectorSet(0.02f, 0.0f, -0.02f, 0.0f); // Get our current characters position in the world, from it's world matrix charPosition = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); charPosition = XMVector3TransformCoord(charPosition, worldMatrix); // Rotate our character smoothly when changing direction (from the GPG series) float destDirLength = 10.0f * frameTime; // Change to the speed you want your character to rotate. This uses the game timer from an earlier lesson // The larget this value, the faster the character rotates currCharDirection = (oldCharDirection) + (destinationDirection * destDirLength); // Get the characters direction (based off time, old position, and desired // direction), by adding together the current direction and the old direction // to get vector that smoothly turns from oldCharDir to denstinationDirection currCharDirection = XMVector3Normalize(currCharDirection); // Normalize the characters current direction vector // Here we find the angle of our character (angle between current direction and world's normal vector), used so that we can actually rotate // our characters world matrix. The three lines below, together, find the angle between 0 PI and 2 PI (360 degrees, and technically, it returns // the degrees in radians from -1 PI to 1 PI, but that has the same effect as 0 PI to 2 PI) between two vectors. // XMVector3AngleBetweenNormals returns an angle between two vectors, but always a positive result between // 0 and 1 PI. Which means, it doesn't tell us which half of the 2 PI degrees that are possible. So, we have the next if statement below, // which crosses the current characters direction and the worlds forward (0,0,1), which should give us the y axis vector (assuming that our character // rotates on the xz plane). We check to see if the y vector is positive ( > 0.0f), and if it is, we set the characters direction angle to be // the opposite of what it currently is, giving us the result in -1 PI to 1 PI. float charDirAngle = XMVectorGetX(XMVector3AngleBetweenNormals( XMVector3Normalize(currCharDirection), XMVector3Normalize(DefaultForward))); if(XMVectorGetY(XMVector3Cross(currCharDirection, DefaultForward)) > 0.0f) charDirAngle = -charDirAngle; // Now we update our characters position based off the frame time, his old position, and the direction he is facing float speed = 15.0f * frameTime; charPosition = charPosition + (destinationDirection * speed); // Update characters world matrix XMMATRIX rotationMatrix; Scale = XMMatrixScaling( 0.25f, 0.25f, 0.25f ); Translation = XMMatrixTranslation(XMVectorGetX(charPosition), 0.0f, XMVectorGetZ(charPosition) ); rotationMatrix = XMMatrixRotationY(charDirAngle - 3.14159265f); // Subtract PI from angle so the character doesn't run backwards worldMatrix = Scale * rotationMatrix * Translation; // Set the characters old direction oldCharDirection = currCharDirection; // Update our animation float timeFactor = 1.0f; // You can speed up or slow down time by changing this UpdateMD5Model(NewMD5Model, time*timeFactor, 0); } void UpdateCamera() { // Rotate target around camera /*camRotationMatrix = XMMatrixRotationRollPitchYaw(camPitch, camYaw, 0); camTarget = XMVector3TransformCoord(DefaultForward, camRotationMatrix ); camTarget = XMVector3Normalize(camTarget);*/ /*XMMATRIX RotateYTempMatrix; RotateYTempMatrix = XMMatrixRotationY(camYaw); // Walk camRight = XMVector3TransformCoord(DefaultRight, RotateYTempMatrix); camForward = XMVector3TransformCoord(DefaultForward, RotateYTempMatrix); camUp = XMVector3Cross(camForward, camRight);*/ /*// Free Cam camRight = XMVector3TransformCoord(DefaultRight, camRotationMatrix); camForward = XMVector3TransformCoord(DefaultForward, camRotationMatrix); camUp = XMVector3Cross(camForward, camRight);*/ /*camPosition += moveLeftRight*camRight; camPosition += moveBackForward*camForward; moveLeftRight = 0.0f; moveBackForward = 0.0f; camTarget = camPosition + camTarget;*/ // Third Person Camera // Set the cameras target to be looking at the character. camTarget = charPosition; // This line is because this lessons model was set to stand on the point (0,0,0) (my bad), and we // don't want to just be looking at the models feet, so we move the camera's target vector up 5 units camTarget = XMVectorSetY(camTarget, XMVectorGetY(camTarget)+5.0f); // Unlike before, when we rotated the cameras target vector around the cameras position, // we are now rotating the cameras position around it's target (which is the character) // Rotate camera around target camRotationMatrix = XMMatrixRotationRollPitchYaw(-camPitch, camYaw, 0); camPosition = XMVector3TransformNormal(DefaultForward, camRotationMatrix ); camPosition = XMVector3Normalize(camPosition); // Set our cameras position to rotate around the character. We need to add 5 to the characters // position's y axis because i'm stupid and modeled the character in the 3d modeling program // to be "standing" on (0,0,0), instead of centered around it ;) Well target her head here though camPosition = (camPosition * charCamDist) + camTarget; // We need to set our cameras forward and right vectors to lay // in the worlds xz plane, since they are the vectors we will // be using to determine the direction our character is running camForward = XMVector3Normalize(camTarget - camPosition); // Get forward vector based on target camForward = XMVectorSetY(camForward, 0.0f); // set forwards y component to 0 so it lays only on // the xz plane camForward = XMVector3Normalize(camForward); // To get our camera's Right vector, we set it's x component to the negative z component from the // camera's forward vector, and the z component to the camera forwards x component camRight = XMVectorSet(-XMVectorGetZ(camForward), 0.0f, XMVectorGetX(camForward), 0.0f); // Our camera does not "roll", so we can safely assume that the cameras right vector is always // in the xz plane, so to get the up vector, we just get the normalized vector from the camera // position to the cameras target, and cross it with the camera's Right vector camUp =XMVector3Normalize(XMVector3Cross(XMVector3Normalize(camPosition - camTarget), camRight)); camView = XMMatrixLookAtLH( camPosition, camTarget, camUp ); } void DetectInput(double time) { DIMOUSESTATE mouseCurrState; BYTE keyboardState[256]; DIKeyboard->Acquire(); DIMouse->Acquire(); DIMouse->GetDeviceState(sizeof(DIMOUSESTATE), &mouseCurrState); DIKeyboard->GetDeviceState(sizeof(keyboardState),(LPVOID)&keyboardState); if(keyboardState[DIK_ESCAPE] & 0x80) PostMessage(hwnd, WM_DESTROY, 0, 0); float speed = 10.0f * time; bool moveChar = false; XMVECTOR desiredCharDir = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); if(keyboardState[DIK_A] & 0x80) { desiredCharDir += (camRight); moveChar = true; } if(keyboardState[DIK_D] & 0x80) { desiredCharDir += -(camRight); moveChar = true; } if(keyboardState[DIK_W] & 0x80) { desiredCharDir += (camForward); moveChar = true; } if(keyboardState[DIK_S] & 0x80) { desiredCharDir += -(camForward); moveChar = true; } if((mouseCurrState.lX != mouseLastState.lX) || (mouseCurrState.lY != mouseLastState.lY)) { camYaw += mouseLastState.lX * 0.002f; camPitch += mouseCurrState.lY * 0.002f; // Check that the camera doesn't go over the top or under the player if(camPitch > 0.85f) camPitch = 0.85f; if(camPitch < -0.85f) camPitch = -0.85f; mouseLastState = mouseCurrState; } if(moveChar == true) MoveChar(time, desiredCharDir, playerCharWorld); UpdateCamera(); return; } void CleanUp() { SwapChain->SetFullscreenState(false, NULL); PostMessage(hwnd, WM_DESTROY, 0, 0); //Release the COM Objects we created SwapChain->Release(); d3d11Device->Release(); d3d11DevCon->Release(); renderTargetView->Release(); VS->Release(); PS->Release(); VS_Buffer->Release(); PS_Buffer->Release(); vertLayout->Release(); depthStencilView->Release(); depthStencilBuffer->Release(); cbPerObjectBuffer->Release(); Transparency->Release(); CCWcullMode->Release(); CWcullMode->Release(); d3d101Device->Release(); keyedMutex11->Release(); keyedMutex10->Release(); D2DRenderTarget->Release(); Brush->Release(); BackBuffer11->Release(); sharedTex11->Release(); DWriteFactory->Release(); TextFormat->Release(); d2dTexture->Release(); cbPerFrameBuffer->Release(); DIKeyboard->Unacquire(); DIMouse->Unacquire(); DirectInput->Release(); sphereIndexBuffer->Release(); sphereVertBuffer->Release(); SKYMAP_VS->Release(); SKYMAP_PS->Release(); SKYMAP_VS_Buffer->Release(); SKYMAP_PS_Buffer->Release(); smrv->Release(); DSLessEqual->Release(); RSCullNone->Release(); meshVertBuff->Release(); meshIndexBuff->Release(); for(int i = 0; i < NewMD5Model.numSubsets; i++) { NewMD5Model.subsets[i].indexBuff->Release(); NewMD5Model.subsets[i].vertBuff->Release(); } } bool LoadMD5Anim(std::wstring filename, Model3D& MD5Model) { ModelAnimation tempAnim; // Temp animation to later store in our model's animation array std::wifstream fileIn (filename.c_str()); // Open file std::wstring checkString; // Stores the next string from our file if(fileIn) // Check if the file was opened { while(fileIn) // Loop until the end of the file is reached { fileIn >> checkString; // Get next string from file if ( checkString == L"MD5Version" ) // Get MD5 version (this function supports version 10) { fileIn >> checkString; /*MessageBox(0, checkString.c_str(), //display message L"MD5Version", MB_OK);*/ } else if ( checkString == L"commandline" ) { std::getline(fileIn, checkString); // Ignore the rest of this line } else if ( checkString == L"numFrames" ) { fileIn >> tempAnim.numFrames; // Store number of frames in this animation } else if ( checkString == L"numJoints" ) { fileIn >> tempAnim.numJoints; // Store number of joints (must match .md5mesh) } else if ( checkString == L"frameRate" ) { fileIn >> tempAnim.frameRate; // Store animation's frame rate (frames per second) } else if ( checkString == L"numAnimatedComponents" ) { fileIn >> tempAnim.numAnimatedComponents; // Number of components in each frame section } else if ( checkString == L"hierarchy" ) { fileIn >> checkString; // Skip opening bracket "{" for(int i = 0; i < tempAnim.numJoints; i++) // Load in each joint { AnimJointInfo tempJoint; fileIn >> tempJoint.name; // Get joints name // Sometimes the names might contain spaces. If that is the case, we need to continue // to read the name until we get to the closing " (quotation marks) if(tempJoint.name[tempJoint.name.size()-1] != '"') { wchar_t checkChar; bool jointNameFound = false; while(!jointNameFound) { checkChar = fileIn.get(); if(checkChar == '"') jointNameFound = true; tempJoint.name += checkChar; } } // Remove the quotation marks from joints name tempJoint.name.erase(0, 1); tempJoint.name.erase(tempJoint.name.size()-1, 1); fileIn >> tempJoint.parentID; // Get joints parent ID fileIn >> tempJoint.flags; // Get flags fileIn >> tempJoint.startIndex; // Get joints start index // Make sure the joint exists in the model, and the parent ID's match up // because the bind pose (md5mesh) joint hierarchy and the animations (md5anim) // joint hierarchy must match up bool jointMatchFound = false; for(int k = 0; k < MD5Model.numJoints; k++) { if(MD5Model.joints[k].name == tempJoint.name) { if(MD5Model.joints[k].parentID == tempJoint.parentID) { jointMatchFound = true; tempAnim.jointInfo.push_back(tempJoint); } } } if(!jointMatchFound) // If the skeleton system does not match up, return false return false; // You might want to add an error message here std::getline(fileIn, checkString); // Skip rest of this line } } else if ( checkString == L"bounds" ) // Load in the AABB for each animation { fileIn >> checkString; // Skip opening bracket "{" for(int i = 0; i < tempAnim.numFrames; i++) { BoundingBox tempBB; fileIn >> checkString; // Skip "(" fileIn >> tempBB.min.x >> tempBB.min.z >> tempBB.min.y; fileIn >> checkString >> checkString; // Skip ") (" fileIn >> tempBB.max.x >> tempBB.max.z >> tempBB.max.y; fileIn >> checkString; // Skip ")" tempAnim.frameBounds.push_back(tempBB); } } else if ( checkString == L"baseframe" ) // This is the default position for the animation { // All frames will build their skeletons off this fileIn >> checkString; // Skip opening bracket "{" for(int i = 0; i < tempAnim.numJoints; i++) { Joint tempBFJ; fileIn >> checkString; // Skip "(" fileIn >> tempBFJ.pos.x >> tempBFJ.pos.z >> tempBFJ.pos.y; fileIn >> checkString >> checkString; // Skip ") (" fileIn >> tempBFJ.orientation.x >> tempBFJ.orientation.z >> tempBFJ.orientation.y; fileIn >> checkString; // Skip ")" tempAnim.baseFrameJoints.push_back(tempBFJ); } } else if ( checkString == L"frame" ) // Load in each frames skeleton (the parts of each joint that changed from the base frame) { FrameData tempFrame; fileIn >> tempFrame.frameID; // Get the frame ID fileIn >> checkString; // Skip opening bracket "{" for(int i = 0; i < tempAnim.numAnimatedComponents; i++) { float tempData; fileIn >> tempData; // Get the data tempFrame.frameData.push_back(tempData); } tempAnim.frameData.push_back(tempFrame); ///*** build the frame skeleton ***/// std::vector<Joint> tempSkeleton; for(int i = 0; i < tempAnim.jointInfo.size(); i++) { int k = 0; // Keep track of position in frameData array // Start the frames joint with the base frame's joint Joint tempFrameJoint = tempAnim.baseFrameJoints[i]; tempFrameJoint.parentID = tempAnim.jointInfo[i].parentID; // Notice how I have been flipping y and z. this is because some modeling programs such as // 3ds max (which is what I use) use a right handed coordinate system. Because of this, we // need to flip the y and z axes. If your having problems loading some models, it's possible // the model was created in a left hand coordinate system. in that case, just reflip all the // y and z axes in our md5 mesh and anim loader. if(tempAnim.jointInfo[i].flags & 1) // pos.x ( 000001 ) tempFrameJoint.pos.x = tempFrame.frameData[tempAnim.jointInfo[i].startIndex + k++]; if(tempAnim.jointInfo[i].flags & 2) // pos.y ( 000010 ) tempFrameJoint.pos.z = tempFrame.frameData[tempAnim.jointInfo[i].startIndex + k++]; if(tempAnim.jointInfo[i].flags & 4) // pos.z ( 000100 ) tempFrameJoint.pos.y = tempFrame.frameData[tempAnim.jointInfo[i].startIndex + k++]; if(tempAnim.jointInfo[i].flags & 8) // orientation.x ( 001000 ) tempFrameJoint.orientation.x = tempFrame.frameData[tempAnim.jointInfo[i].startIndex + k++]; if(tempAnim.jointInfo[i].flags & 16) // orientation.y ( 010000 ) tempFrameJoint.orientation.z = tempFrame.frameData[tempAnim.jointInfo[i].startIndex + k++]; if(tempAnim.jointInfo[i].flags & 32) // orientation.z ( 100000 ) tempFrameJoint.orientation.y = tempFrame.frameData[tempAnim.jointInfo[i].startIndex + k++]; // Compute the quaternions w float t = 1.0f - ( tempFrameJoint.orientation.x * tempFrameJoint.orientation.x ) - ( tempFrameJoint.orientation.y * tempFrameJoint.orientation.y ) - ( tempFrameJoint.orientation.z * tempFrameJoint.orientation.z ); if ( t < 0.0f ) { tempFrameJoint.orientation.w = 0.0f; } else { tempFrameJoint.orientation.w = -sqrtf(t); } // Now, if the upper arm of your skeleton moves, you need to also move the lower part of your arm, and then the hands, and then finally the fingers (possibly weapon or tool too) // This is where joint hierarchy comes in. We start at the top of the hierarchy, and move down to each joints child, rotating and translating them based on their parents rotation // and translation. We can assume that by the time we get to the child, the parent has already been rotated and transformed based of it's parent. We can assume this because // the child should never come before the parent in the files we loaded in. if(tempFrameJoint.parentID >= 0) { Joint parentJoint = tempSkeleton[tempFrameJoint.parentID]; // Turn the XMFLOAT3 and 4's into vectors for easier computation XMVECTOR parentJointOrientation = XMVectorSet(parentJoint.orientation.x, parentJoint.orientation.y, parentJoint.orientation.z, parentJoint.orientation.w); XMVECTOR tempJointPos = XMVectorSet(tempFrameJoint.pos.x, tempFrameJoint.pos.y, tempFrameJoint.pos.z, 0.0f); XMVECTOR parentOrientationConjugate = XMVectorSet(-parentJoint.orientation.x, -parentJoint.orientation.y, -parentJoint.orientation.z, parentJoint.orientation.w); // Calculate current joints position relative to its parents position XMFLOAT3 rotatedPos; XMStoreFloat3(&rotatedPos, XMQuaternionMultiply(XMQuaternionMultiply(parentJointOrientation, tempJointPos), parentOrientationConjugate)); // Translate the joint to model space by adding the parent joint's pos to it tempFrameJoint.pos.x = rotatedPos.x + parentJoint.pos.x; tempFrameJoint.pos.y = rotatedPos.y + parentJoint.pos.y; tempFrameJoint.pos.z = rotatedPos.z + parentJoint.pos.z; // Currently the joint is oriented in its parent joints space, we now need to orient it in // model space by multiplying the two orientations together (parentOrientation * childOrientation) <- In that order XMVECTOR tempJointOrient = XMVectorSet(tempFrameJoint.orientation.x, tempFrameJoint.orientation.y, tempFrameJoint.orientation.z, tempFrameJoint.orientation.w); tempJointOrient = XMQuaternionMultiply(parentJointOrientation, tempJointOrient); // Normalize the orienation quaternion tempJointOrient = XMQuaternionNormalize(tempJointOrient); XMStoreFloat4(&tempFrameJoint.orientation, tempJointOrient); } // Store the joint into our temporary frame skeleton tempSkeleton.push_back(tempFrameJoint); } // Push back our newly created frame skeleton into the animation's frameSkeleton array tempAnim.frameSkeleton.push_back(tempSkeleton); fileIn >> checkString; // Skip closing bracket "}" } } // Calculate and store some usefull animation data tempAnim.frameTime = 1.0f / tempAnim.frameRate; // Set the time per frame tempAnim.totalAnimTime = tempAnim.numFrames * tempAnim.frameTime; // Set the total time the animation takes tempAnim.currAnimTime = 0.0f; // Set the current time to zero MD5Model.animations.push_back(tempAnim); // Push back the animation into our model object } else // If the file was not loaded { SwapChain->SetFullscreenState(false, NULL); // Make sure we are out of fullscreen // create message std::wstring message = L"Could not open: "; message += filename; MessageBox(0, message.c_str(), // display message L"Error", MB_OK); return false; } return true; } void UpdateMD5Model(Model3D& MD5Model, float deltaTime, int animation) { MD5Model.animations[animation].currAnimTime += deltaTime; // Update the current animation time if(MD5Model.animations[animation].currAnimTime > MD5Model.animations[animation].totalAnimTime) MD5Model.animations[animation].currAnimTime = 0.0f; // Which frame are we on float currentFrame = MD5Model.animations[animation].currAnimTime * MD5Model.animations[animation].frameRate; int frame0 = floorf( currentFrame ); int frame1 = frame0 + 1; // Make sure we don't go over the number of frames if(frame0 == MD5Model.animations[animation].numFrames-1) frame1 = 0; float interpolation = currentFrame - frame0; // Get the remainder (in time) between frame0 and frame1 to use as interpolation factor std::vector<Joint> interpolatedSkeleton; // Create a frame skeleton to store the interpolated skeletons in // Compute the interpolated skeleton for( int i = 0; i < MD5Model.animations[animation].numJoints; i++) { Joint tempJoint; Joint joint0 = MD5Model.animations[animation].frameSkeleton[frame0][i]; // Get the i'th joint of frame0's skeleton Joint joint1 = MD5Model.animations[animation].frameSkeleton[frame1][i]; // Get the i'th joint of frame1's skeleton tempJoint.parentID = joint0.parentID; // Set the tempJoints parent id // Turn the two quaternions into XMVECTORs for easy computations XMVECTOR joint0Orient = XMVectorSet(joint0.orientation.x, joint0.orientation.y, joint0.orientation.z, joint0.orientation.w); XMVECTOR joint1Orient = XMVectorSet(joint1.orientation.x, joint1.orientation.y, joint1.orientation.z, joint1.orientation.w); // Interpolate positions tempJoint.pos.x = joint0.pos.x + (interpolation * (joint1.pos.x - joint0.pos.x)); tempJoint.pos.y = joint0.pos.y + (interpolation * (joint1.pos.y - joint0.pos.y)); tempJoint.pos.z = joint0.pos.z + (interpolation * (joint1.pos.z - joint0.pos.z)); // Interpolate orientations using spherical interpolation (Slerp) XMStoreFloat4(&tempJoint.orientation, XMQuaternionSlerp(joint0Orient, joint1Orient, interpolation)); interpolatedSkeleton.push_back(tempJoint); // Push the joint back into our interpolated skeleton } for ( int k = 0; k < MD5Model.numSubsets; k++) { for ( int i = 0; i < MD5Model.subsets[k].vertices.size(); ++i ) { Vertex tempVert = MD5Model.subsets[k].vertices[i]; tempVert.pos = XMFLOAT3(0, 0, 0); // Make sure the vertex's pos is cleared first tempVert.normal = XMFLOAT3(0,0,0); // Clear vertices normal // Sum up the joints and weights information to get vertex's position and normal for ( int j = 0; j < tempVert.WeightCount; ++j ) { Weight tempWeight = MD5Model.subsets[k].weights[tempVert.StartWeight + j]; Joint tempJoint = interpolatedSkeleton[tempWeight.jointID]; // Convert joint orientation and weight pos to vectors for easier computation XMVECTOR tempJointOrientation = XMVectorSet(tempJoint.orientation.x, tempJoint.orientation.y, tempJoint.orientation.z, tempJoint.orientation.w); XMVECTOR tempWeightPos = XMVectorSet(tempWeight.pos.x, tempWeight.pos.y, tempWeight.pos.z, 0.0f); // We will need to use the conjugate of the joint orientation quaternion XMVECTOR tempJointOrientationConjugate = XMQuaternionInverse(tempJointOrientation); // Calculate vertex position (in joint space, eg. rotate the point around (0,0,0)) for this weight using the joint orientation quaternion and its conjugate // We can rotate a point using a quaternion with the equation "rotatedPoint = quaternion * point * quaternionConjugate" XMFLOAT3 rotatedPoint; XMStoreFloat3(&rotatedPoint, XMQuaternionMultiply(XMQuaternionMultiply(tempJointOrientation, tempWeightPos), tempJointOrientationConjugate)); // Now move the verices position from joint space (0,0,0) to the joints position in world space, taking the weights bias into account tempVert.pos.x += ( tempJoint.pos.x + rotatedPoint.x ) * tempWeight.bias; tempVert.pos.y += ( tempJoint.pos.y + rotatedPoint.y ) * tempWeight.bias; tempVert.pos.z += ( tempJoint.pos.z + rotatedPoint.z ) * tempWeight.bias; // Compute the normals for this frames skeleton using the weight normals from before // We can comput the normals the same way we compute the vertices position, only we don't have to translate them (just rotate) XMVECTOR tempWeightNormal = XMVectorSet(tempWeight.normal.x, tempWeight.normal.y, tempWeight.normal.z, 0.0f); // Rotate the normal XMStoreFloat3(&rotatedPoint, XMQuaternionMultiply(XMQuaternionMultiply(tempJointOrientation, tempWeightNormal), tempJointOrientationConjugate)); // Add to vertices normal and ake weight bias into account tempVert.normal.x -= rotatedPoint.x * tempWeight.bias; tempVert.normal.y -= rotatedPoint.y * tempWeight.bias; tempVert.normal.z -= rotatedPoint.z * tempWeight.bias; } MD5Model.subsets[k].positions[i] = tempVert.pos; // Store the vertices position in the position vector instead of straight into the vertex vector MD5Model.subsets[k].vertices[i].normal = tempVert.normal; // Store the vertices normal XMStoreFloat3(&MD5Model.subsets[k].vertices[i].normal, XMVector3Normalize(XMLoadFloat3(&MD5Model.subsets[k].vertices[i].normal))); } // Put the positions into the vertices for this subset for(int i = 0; i < MD5Model.subsets[k].vertices.size(); i++) { MD5Model.subsets[k].vertices[i].pos = MD5Model.subsets[k].positions[i]; } // Update the subsets vertex buffer // First lock the buffer D3D11_MAPPED_SUBRESOURCE mappedVertBuff; hr = d3d11DevCon->Map(MD5Model.subsets[k].vertBuff, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedVertBuff); // Copy the data into the vertex buffer. memcpy(mappedVertBuff.pData, &MD5Model.subsets[k].vertices[0], (sizeof(Vertex) * MD5Model.subsets[k].vertices.size())); d3d11DevCon->Unmap(MD5Model.subsets[k].vertBuff, 0); // The line below is another way to update a buffer. You will use this when you want to update a buffer less // than once per frame, since the GPU reads will be faster (the buffer was created as a DEFAULT buffer instead // of a DYNAMIC buffer), and the CPU writes will be slower. You can try both methods to find out which one is faster // for you. if you want to use the line below, you will have to create the buffer with D3D11_USAGE_DEFAULT instead // of D3D11_USAGE_DYNAMIC //d3d11DevCon->UpdateSubresource( MD5Model.subsets[k].vertBuff, 0, NULL, &MD5Model.subsets[k].vertices[0], 0, 0 ); } } bool LoadMD5Model(std::wstring filename, Model3D& MD5Model, std::vector<ID3D11ShaderResourceView*>& shaderResourceViewArray, std::vector<std::wstring> texFileNameArray) { std::wifstream fileIn (filename.c_str()); // Open file std::wstring checkString; // Stores the next string from our file if(fileIn) // Check if the file was opened { while(fileIn) // Loop until the end of the file is reached { fileIn >> checkString; // Get next string from file if(checkString == L"MD5Version") // Get MD5 version (this function supports version 10) { /*fileIn >> checkString; MessageBox(0, checkString.c_str(), //display message L"MD5Version", MB_OK);*/ } else if ( checkString == L"commandline" ) { std::getline(fileIn, checkString); // Ignore the rest of this line } else if ( checkString == L"numJoints" ) { fileIn >> MD5Model.numJoints; // Store number of joints } else if ( checkString == L"numMeshes" ) { fileIn >> MD5Model.numSubsets; // Store number of meshes or subsets which we will call them } else if ( checkString == L"joints" ) { Joint tempJoint; fileIn >> checkString; // Skip the "{" for(int i = 0; i < MD5Model.numJoints; i++) { fileIn >> tempJoint.name; // Store joints name // Sometimes the names might contain spaces. If that is the case, we need to continue // to read the name until we get to the closing " (quotation marks) if(tempJoint.name[tempJoint.name.size()-1] != '"') { wchar_t checkChar; bool jointNameFound = false; while(!jointNameFound) { checkChar = fileIn.get(); if(checkChar == '"') jointNameFound = true; tempJoint.name += checkChar; } } fileIn >> tempJoint.parentID; // Store Parent joint's ID fileIn >> checkString; // Skip the "(" // Store position of this joint (swap y and z axis if model was made in RH Coord Sys) fileIn >> tempJoint.pos.x >> tempJoint.pos.z >> tempJoint.pos.y; fileIn >> checkString >> checkString; // Skip the ")" and "(" // Store orientation of this joint fileIn >> tempJoint.orientation.x >> tempJoint.orientation.z >> tempJoint.orientation.y; // Remove the quotation marks from joints name tempJoint.name.erase(0, 1); tempJoint.name.erase(tempJoint.name.size()-1, 1); // Compute the w axis of the quaternion (The MD5 model uses a 3D vector to describe the // direction the bone is facing. However, we need to turn this into a quaternion, and the way // quaternions work, is the xyz values describe the axis of rotation, while the w is a value // between 0 and 1 which describes the angle of rotation) float t = 1.0f - ( tempJoint.orientation.x * tempJoint.orientation.x ) - ( tempJoint.orientation.y * tempJoint.orientation.y ) - ( tempJoint.orientation.z * tempJoint.orientation.z ); if ( t < 0.0f ) { tempJoint.orientation.w = 0.0f; } else { tempJoint.orientation.w = -sqrtf(t); } std::getline(fileIn, checkString); // Skip rest of this line MD5Model.joints.push_back(tempJoint); // Store the joint into this models joint vector } fileIn >> checkString; // Skip the "}" } else if ( checkString == L"mesh") { ModelSubset subset; int numVerts, numTris, numWeights; fileIn >> checkString; // Skip the "{" fileIn >> checkString; while ( checkString != L"}" ) // Read until '}' { // In this lesson, for the sake of simplicity, we will assume a textures filename is givin here. // Usually though, the name of a material (stored in a material library. Think back to the lesson on // loading .obj files, where the material library was contained in the file .mtl) is givin. Let this // be an exercise to load the material from a material library such as obj's .mtl file, instead of // just the texture like we will do here. if(checkString == L"shader") // Load the texture or material { std::wstring fileNamePath; fileIn >> fileNamePath; // Get texture's filename // Take spaces into account if filename or material name has a space in it if(fileNamePath[fileNamePath.size()-1] != '"') { wchar_t checkChar; bool fileNameFound = false; while(!fileNameFound) { checkChar = fileIn.get(); if(checkChar == '"') fileNameFound = true; fileNamePath += checkChar; } } // Remove the quotation marks from texture path fileNamePath.erase(0, 1); fileNamePath.erase(fileNamePath.size()-1, 1); //check if this texture has already been loaded bool alreadyLoaded = false; for(int i = 0; i < texFileNameArray.size(); ++i) { if(fileNamePath == texFileNameArray[i]) { alreadyLoaded = true; subset.texArrayIndex = i; } } //if the texture is not already loaded, load it now if(!alreadyLoaded) { ID3D11ShaderResourceView* tempMeshSRV; hr = D3DX11CreateShaderResourceViewFromFile( d3d11Device, fileNamePath.c_str(), NULL, NULL, &tempMeshSRV, NULL ); if(SUCCEEDED(hr)) { texFileNameArray.push_back(fileNamePath.c_str()); subset.texArrayIndex = shaderResourceViewArray.size(); shaderResourceViewArray.push_back(tempMeshSRV); } else { MessageBox(0, fileNamePath.c_str(), //display message L"Could Not Open:", MB_OK); return false; } } std::getline(fileIn, checkString); // Skip rest of this line } else if ( checkString == L"numverts") { fileIn >> numVerts; // Store number of vertices std::getline(fileIn, checkString); // Skip rest of this line for(int i = 0; i < numVerts; i++) { Vertex tempVert; fileIn >> checkString // Skip "vert # (" >> checkString >> checkString; fileIn >> tempVert.texCoord.x // Store tex coords >> tempVert.texCoord.y; fileIn >> checkString; // Skip ")" fileIn >> tempVert.StartWeight; // Index of first weight this vert will be weighted to fileIn >> tempVert.WeightCount; // Number of weights for this vertex std::getline(fileIn, checkString); // Skip rest of this line subset.vertices.push_back(tempVert); // Push back this vertex into subsets vertex vector } } else if ( checkString == L"numtris") { fileIn >> numTris; subset.numTriangles = numTris; std::getline(fileIn, checkString); // Skip rest of this line for(int i = 0; i < numTris; i++) // Loop through each triangle { DWORD tempIndex; fileIn >> checkString; // Skip "tri" fileIn >> checkString; // Skip tri counter for(int k = 0; k < 3; k++) // Store the 3 indices { fileIn >> tempIndex; subset.indices.push_back(tempIndex); } std::getline(fileIn, checkString); // Skip rest of this line } } else if ( checkString == L"numweights") { fileIn >> numWeights; std::getline(fileIn, checkString); // Skip rest of this line for(int i = 0; i < numWeights; i++) { Weight tempWeight; fileIn >> checkString >> checkString; // Skip "weight #" fileIn >> tempWeight.jointID; // Store weight's joint ID fileIn >> tempWeight.bias; // Store weight's influence over a vertex fileIn >> checkString; // Skip "(" fileIn >> tempWeight.pos.x // Store weight's pos in joint's local space >> tempWeight.pos.z >> tempWeight.pos.y; std::getline(fileIn, checkString); // Skip rest of this line subset.weights.push_back(tempWeight); // Push back tempWeight into subsets Weight array } } else std::getline(fileIn, checkString); // Skip anything else fileIn >> checkString; // Skip "}" } //*** find each vertex's position using the joints and weights ***// for ( int i = 0; i < subset.vertices.size(); ++i ) { Vertex tempVert = subset.vertices[i]; tempVert.pos = XMFLOAT3(0, 0, 0); // Make sure the vertex's pos is cleared first // Sum up the joints and weights information to get vertex's position for ( int j = 0; j < tempVert.WeightCount; ++j ) { Weight tempWeight = subset.weights[tempVert.StartWeight + j]; Joint tempJoint = MD5Model.joints[tempWeight.jointID]; // Convert joint orientation and weight pos to vectors for easier computation // When converting a 3d vector to a quaternion, you should put 0 for "w", and // When converting a quaternion to a 3d vector, you can just ignore the "w" XMVECTOR tempJointOrientation = XMVectorSet(tempJoint.orientation.x, tempJoint.orientation.y, tempJoint.orientation.z, tempJoint.orientation.w); XMVECTOR tempWeightPos = XMVectorSet(tempWeight.pos.x, tempWeight.pos.y, tempWeight.pos.z, 0.0f); // We will need to use the conjugate of the joint orientation quaternion // To get the conjugate of a quaternion, all you have to do is inverse the x, y, and z XMVECTOR tempJointOrientationConjugate = XMVectorSet(-tempJoint.orientation.x, -tempJoint.orientation.y, -tempJoint.orientation.z, tempJoint.orientation.w); // Calculate vertex position (in joint space, eg. rotate the point around (0,0,0)) for this weight using the joint orientation quaternion and its conjugate // We can rotate a point using a quaternion with the equation "rotatedPoint = quaternion * point * quaternionConjugate" XMFLOAT3 rotatedPoint; XMStoreFloat3(&rotatedPoint, XMQuaternionMultiply(XMQuaternionMultiply(tempJointOrientation, tempWeightPos), tempJointOrientationConjugate)); // Now move the verices position from joint space (0,0,0) to the joints position in world space, taking the weights bias into account // The weight bias is used because multiple weights might have an effect on the vertices final position. Each weight is attached to one joint. tempVert.pos.x += ( tempJoint.pos.x + rotatedPoint.x ) * tempWeight.bias; tempVert.pos.y += ( tempJoint.pos.y + rotatedPoint.y ) * tempWeight.bias; tempVert.pos.z += ( tempJoint.pos.z + rotatedPoint.z ) * tempWeight.bias; // Basically what has happened above, is we have taken the weights position relative to the joints position // we then rotate the weights position (so that the weight is actually being rotated around (0, 0, 0) in world space) using // the quaternion describing the joints rotation. We have stored this rotated point in rotatedPoint, which we then add to // the joints position (because we rotated the weight's position around (0,0,0) in world space, and now need to translate it // so that it appears to have been rotated around the joints position). Finally we multiply the answer with the weights bias, // or how much control the weight has over the final vertices position. All weight's bias effecting a single vertex's position // must add up to 1. } subset.positions.push_back(tempVert.pos); // Store the vertices position in the position vector instead of straight into the vertex vector // since we can use the positions vector for certain things like collision detection or picking // without having to work with the entire vertex structure. } // Put the positions into the vertices for this subset for(int i = 0; i < subset.vertices.size(); i++) { subset.vertices[i].pos = subset.positions[i]; } //*** Calculate vertex normals using normal averaging ***/// std::vector<XMFLOAT3> tempNormal; //normalized and unnormalized normals XMFLOAT3 unnormalized = XMFLOAT3(0.0f, 0.0f, 0.0f); //Used to get vectors (sides) from the position of the verts float vecX, vecY, vecZ; //Two edges of our triangle XMVECTOR edge1 = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); XMVECTOR edge2 = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); //Compute face normals for(int i = 0; i < subset.numTriangles; ++i) { //Get the vector describing one edge of our triangle (edge 0,2) vecX = subset.vertices[subset.indices[(i*3)]].pos.x - subset.vertices[subset.indices[(i*3)+2]].pos.x; vecY = subset.vertices[subset.indices[(i*3)]].pos.y - subset.vertices[subset.indices[(i*3)+2]].pos.y; vecZ = subset.vertices[subset.indices[(i*3)]].pos.z - subset.vertices[subset.indices[(i*3)+2]].pos.z; edge1 = XMVectorSet(vecX, vecY, vecZ, 0.0f); //Create our first edge //Get the vector describing another edge of our triangle (edge 2,1) vecX = subset.vertices[subset.indices[(i*3)+2]].pos.x - subset.vertices[subset.indices[(i*3)+1]].pos.x; vecY = subset.vertices[subset.indices[(i*3)+2]].pos.y - subset.vertices[subset.indices[(i*3)+1]].pos.y; vecZ = subset.vertices[subset.indices[(i*3)+2]].pos.z - subset.vertices[subset.indices[(i*3)+1]].pos.z; edge2 = XMVectorSet(vecX, vecY, vecZ, 0.0f); //Create our second edge //Cross multiply the two edge vectors to get the un-normalized face normal XMStoreFloat3(&unnormalized, XMVector3Cross(edge1, edge2)); tempNormal.push_back(unnormalized); } //Compute vertex normals (normal Averaging) XMVECTOR normalSum = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); int facesUsing = 0; float tX, tY, tZ; //temp axis variables //Go through each vertex for(int i = 0; i < subset.vertices.size(); ++i) { //Check which triangles use this vertex for(int j = 0; j < subset.numTriangles; ++j) { if(subset.indices[j*3] == i || subset.indices[(j*3)+1] == i || subset.indices[(j*3)+2] == i) { tX = XMVectorGetX(normalSum) + tempNormal[j].x; tY = XMVectorGetY(normalSum) + tempNormal[j].y; tZ = XMVectorGetZ(normalSum) + tempNormal[j].z; normalSum = XMVectorSet(tX, tY, tZ, 0.0f); //If a face is using the vertex, add the unormalized face normal to the normalSum facesUsing++; } } //Get the actual normal by dividing the normalSum by the number of faces sharing the vertex normalSum = normalSum / facesUsing; //Normalize the normalSum vector normalSum = XMVector3Normalize(normalSum); //Store the normal and tangent in our current vertex subset.vertices[i].normal.x = -XMVectorGetX(normalSum); subset.vertices[i].normal.y = -XMVectorGetY(normalSum); subset.vertices[i].normal.z = -XMVectorGetZ(normalSum); // Create the joint space normal for easy normal calculations in animation Vertex tempVert = subset.vertices[i]; // Get the current vertex subset.jointSpaceNormals.push_back(XMFLOAT3(0,0,0)); // Push back a blank normal XMVECTOR normal = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); // Clear normal for ( int k = 0; k < tempVert.WeightCount; k++) // Loop through each of the vertices weights { Joint tempJoint = MD5Model.joints[subset.weights[tempVert.StartWeight + k].jointID]; // Get the joints orientation XMVECTOR jointOrientation = XMVectorSet(tempJoint.orientation.x, tempJoint.orientation.y, tempJoint.orientation.z, tempJoint.orientation.w); // Calculate normal based off joints orientation (turn into joint space) normal = XMQuaternionMultiply(XMQuaternionMultiply(XMQuaternionInverse(jointOrientation), normalSum), jointOrientation); XMStoreFloat3(&subset.weights[tempVert.StartWeight + k].normal, XMVector3Normalize(normal)); // Store the normalized quaternion into our weights normal } //Clear normalSum, facesUsing for next vertex normalSum = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); facesUsing = 0; } // Create index buffer D3D11_BUFFER_DESC indexBufferDesc; ZeroMemory( &indexBufferDesc, sizeof(indexBufferDesc) ); indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(DWORD) * subset.numTriangles * 3; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = &subset.indices[0]; d3d11Device->CreateBuffer(&indexBufferDesc, &iinitData, &subset.indexBuff); //Create Vertex Buffer D3D11_BUFFER_DESC vertexBufferDesc; ZeroMemory( &vertexBufferDesc, sizeof(vertexBufferDesc) ); vertexBufferDesc.Usage = D3D11_USAGE_DYNAMIC; // We will be updating this buffer, so we must set as dynamic vertexBufferDesc.ByteWidth = sizeof( Vertex ) * subset.vertices.size(); vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; // Give CPU power to write to buffer vertexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; ZeroMemory( &vertexBufferData, sizeof(vertexBufferData) ); vertexBufferData.pSysMem = &subset.vertices[0]; hr = d3d11Device->CreateBuffer( &vertexBufferDesc, &vertexBufferData, &subset.vertBuff); // Push back the temp subset into the models subset vector MD5Model.subsets.push_back(subset); } } } else { SwapChain->SetFullscreenState(false, NULL); // Make sure we are out of fullscreen // create message std::wstring message = L"Could not open: "; message += filename; message += L". Please visit Braynzar Vision to download the model"; MessageBox(0, message.c_str(), // display message L"Error", MB_OK); return false; } return true; } bool LoadObjModel(std::wstring filename, ID3D11Buffer** vertBuff, ID3D11Buffer** indexBuff, std::vector<int>& subsetIndexStart, std::vector<int>& subsetMaterialArray, std::vector<SurfaceMaterial>& material, int& subsetCount, bool isRHCoordSys, bool computeNormals, std::vector<XMFLOAT3> &AABB) { HRESULT hr = 0; std::wifstream fileIn (filename.c_str()); //Open file std::wstring meshMatLib; //String to hold our obj material library filename //Arrays to store our model's information std::vector<DWORD> indices; std::vector<XMFLOAT3> vertPos; std::vector<XMFLOAT3> vertNorm; std::vector<XMFLOAT2> vertTexCoord; std::vector<std::wstring> meshMaterials; //Vertex definition indices std::vector<int> vertPosIndex; std::vector<int> vertNormIndex; std::vector<int> vertTCIndex; //Make sure we have a default if no tex coords or normals are defined bool hasTexCoord = false; bool hasNorm = false; //Temp variables to store into vectors std::wstring meshMaterialsTemp; int vertPosIndexTemp; int vertNormIndexTemp; int vertTCIndexTemp; wchar_t checkChar; //The variable we will use to store one char from file at a time std::wstring face; //Holds the string containing our face vertices int vIndex = 0; //Keep track of our vertex index count int triangleCount = 0; //Total Triangles int totalVerts = 0; int meshTriangles = 0; //Check to see if the file was opened if (fileIn) { while(fileIn) { checkChar = fileIn.get(); //Get next char switch (checkChar) { case '#': checkChar = fileIn.get(); while(checkChar != '\n') checkChar = fileIn.get(); break; case 'v': //Get Vertex Descriptions checkChar = fileIn.get(); if(checkChar == ' ') //v - vert position { float vz, vy, vx; fileIn >> vx >> vy >> vz; //Store the next three types if(isRHCoordSys) //If model is from an RH Coord System vertPos.push_back(XMFLOAT3( vx, vy, vz * -1.0f)); //Invert the Z axis else vertPos.push_back(XMFLOAT3( vx, vy, vz)); } if(checkChar == 't') //vt - vert tex coords { float vtcu, vtcv; fileIn >> vtcu >> vtcv; //Store next two types if(isRHCoordSys) //If model is from an RH Coord System vertTexCoord.push_back(XMFLOAT2(vtcu, 1.0f-vtcv)); //Reverse the "v" axis else vertTexCoord.push_back(XMFLOAT2(vtcu, vtcv)); hasTexCoord = true; //We know the model uses texture coords } //Since we compute the normals later, we don't need to check for normals //In the file, but i'll do it here anyway if(checkChar == 'n') //vn - vert normal { float vnx, vny, vnz; fileIn >> vnx >> vny >> vnz; //Store next three types if(isRHCoordSys) //If model is from an RH Coord System vertNorm.push_back(XMFLOAT3( vnx, vny, vnz * -1.0f )); //Invert the Z axis else vertNorm.push_back(XMFLOAT3( vnx, vny, vnz )); hasNorm = true; //We know the model defines normals } break; //New group (Subset) case 'g': //g - defines a group checkChar = fileIn.get(); if(checkChar == ' ') { subsetIndexStart.push_back(vIndex); //Start index for this subset subsetCount++; } break; //Get Face Index case 'f': //f - defines the faces checkChar = fileIn.get(); if(checkChar == ' ') { face = L""; std::wstring VertDef; //Holds one vertex definition at a time triangleCount = 0; checkChar = fileIn.get(); while(checkChar != '\n') { face += checkChar; //Add the char to our face string checkChar = fileIn.get(); //Get the next Character if(checkChar == ' ') //If its a space... triangleCount++; //Increase our triangle count } //Check for space at the end of our face string if(face[face.length()-1] == ' ') triangleCount--; //Each space adds to our triangle count triangleCount -= 1; //Ever vertex in the face AFTER the first two are new faces std::wstringstream ss(face); if(face.length() > 0) { int firstVIndex, lastVIndex; //Holds the first and last vertice's index for(int i = 0; i < 3; ++i) //First three vertices (first triangle) { ss >> VertDef; //Get vertex definition (vPos/vTexCoord/vNorm) std::wstring vertPart; int whichPart = 0; //(vPos, vTexCoord, or vNorm) //Parse this string for(int j = 0; j < VertDef.length(); ++j) { if(VertDef[j] != '/') //If there is no divider "/", add a char to our vertPart vertPart += VertDef[j]; //If the current char is a divider "/", or its the last character in the string if(VertDef[j] == '/' || j == VertDef.length()-1) { std::wistringstream wstringToInt(vertPart); //Used to convert wstring to int if(whichPart == 0) //If vPos { wstringToInt >> vertPosIndexTemp; vertPosIndexTemp -= 1; //subtract one since c++ arrays start with 0, and obj start with 1 //Check to see if the vert pos was the only thing specified if(j == VertDef.length()-1) { vertNormIndexTemp = 0; vertTCIndexTemp = 0; } } else if(whichPart == 1) //If vTexCoord { if(vertPart != L"") //Check to see if there even is a tex coord { wstringToInt >> vertTCIndexTemp; vertTCIndexTemp -= 1; //subtract one since c++ arrays start with 0, and obj start with 1 } else //If there is no tex coord, make a default vertTCIndexTemp = 0; //If the cur. char is the second to last in the string, then //there must be no normal, so set a default normal if(j == VertDef.length()-1) vertNormIndexTemp = 0; } else if(whichPart == 2) //If vNorm { std::wistringstream wstringToInt(vertPart); wstringToInt >> vertNormIndexTemp; vertNormIndexTemp -= 1; //subtract one since c++ arrays start with 0, and obj start with 1 } vertPart = L""; //Get ready for next vertex part whichPart++; //Move on to next vertex part } } //Check to make sure there is at least one subset if(subsetCount == 0) { subsetIndexStart.push_back(vIndex); //Start index for this subset subsetCount++; } //Avoid duplicate vertices bool vertAlreadyExists = false; if(totalVerts >= 3) //Make sure we at least have one triangle to check { //Loop through all the vertices for(int iCheck = 0; iCheck < totalVerts; ++iCheck) { //If the vertex position and texture coordinate in memory are the same //As the vertex position and texture coordinate we just now got out //of the obj file, we will set this faces vertex index to the vertex's //index value in memory. This makes sure we don't create duplicate vertices if(vertPosIndexTemp == vertPosIndex[iCheck] && !vertAlreadyExists) { if(vertTCIndexTemp == vertTCIndex[iCheck]) { indices.push_back(iCheck); //Set index for this vertex vertAlreadyExists = true; //If we've made it here, the vertex already exists } } } } //If this vertex is not already in our vertex arrays, put it there if(!vertAlreadyExists) { vertPosIndex.push_back(vertPosIndexTemp); vertTCIndex.push_back(vertTCIndexTemp); vertNormIndex.push_back(vertNormIndexTemp); totalVerts++; //We created a new vertex indices.push_back(totalVerts-1); //Set index for this vertex } //If this is the very first vertex in the face, we need to //make sure the rest of the triangles use this vertex if(i == 0) { firstVIndex = indices[vIndex]; //The first vertex index of this FACE } //If this was the last vertex in the first triangle, we will make sure //the next triangle uses this one (eg. tri1(1,2,3) tri2(1,3,4) tri3(1,4,5)) if(i == 2) { lastVIndex = indices[vIndex]; //The last vertex index of this TRIANGLE } vIndex++; //Increment index count } meshTriangles++; //One triangle down //If there are more than three vertices in the face definition, we need to make sure //we convert the face to triangles. We created our first triangle above, now we will //create a new triangle for every new vertex in the face, using the very first vertex //of the face, and the last vertex from the triangle before the current triangle for(int l = 0; l < triangleCount-1; ++l) //Loop through the next vertices to create new triangles { //First vertex of this triangle (the very first vertex of the face too) indices.push_back(firstVIndex); //Set index for this vertex vIndex++; //Second Vertex of this triangle (the last vertex used in the tri before this one) indices.push_back(lastVIndex); //Set index for this vertex vIndex++; //Get the third vertex for this triangle ss >> VertDef; std::wstring vertPart; int whichPart = 0; //Parse this string (same as above) for(int j = 0; j < VertDef.length(); ++j) { if(VertDef[j] != '/') vertPart += VertDef[j]; if(VertDef[j] == '/' || j == VertDef.length()-1) { std::wistringstream wstringToInt(vertPart); if(whichPart == 0) { wstringToInt >> vertPosIndexTemp; vertPosIndexTemp -= 1; //Check to see if the vert pos was the only thing specified if(j == VertDef.length()-1) { vertTCIndexTemp = 0; vertNormIndexTemp = 0; } } else if(whichPart == 1) { if(vertPart != L"") { wstringToInt >> vertTCIndexTemp; vertTCIndexTemp -= 1; } else vertTCIndexTemp = 0; if(j == VertDef.length()-1) vertNormIndexTemp = 0; } else if(whichPart == 2) { std::wistringstream wstringToInt(vertPart); wstringToInt >> vertNormIndexTemp; vertNormIndexTemp -= 1; } vertPart = L""; whichPart++; } } //Check for duplicate vertices bool vertAlreadyExists = false; if(totalVerts >= 3) //Make sure we at least have one triangle to check { for(int iCheck = 0; iCheck < totalVerts; ++iCheck) { if(vertPosIndexTemp == vertPosIndex[iCheck] && !vertAlreadyExists) { if(vertTCIndexTemp == vertTCIndex[iCheck]) { indices.push_back(iCheck); //Set index for this vertex vertAlreadyExists = true; //If we've made it here, the vertex already exists } } } } if(!vertAlreadyExists) { vertPosIndex.push_back(vertPosIndexTemp); vertTCIndex.push_back(vertTCIndexTemp); vertNormIndex.push_back(vertNormIndexTemp); totalVerts++; //New vertex created, add to total verts indices.push_back(totalVerts-1); //Set index for this vertex } //Set the second vertex for the next triangle to the last vertex we got lastVIndex = indices[vIndex]; //The last vertex index of this TRIANGLE meshTriangles++; //New triangle defined vIndex++; } } } break; case 'm': //mtllib - material library filename checkChar = fileIn.get(); if(checkChar == 't') { checkChar = fileIn.get(); if(checkChar == 'l') { checkChar = fileIn.get(); if(checkChar == 'l') { checkChar = fileIn.get(); if(checkChar == 'i') { checkChar = fileIn.get(); if(checkChar == 'b') { checkChar = fileIn.get(); if(checkChar == ' ') { //Store the material libraries file name fileIn >> meshMatLib; } } } } } } break; case 'u': //usemtl - which material to use checkChar = fileIn.get(); if(checkChar == 's') { checkChar = fileIn.get(); if(checkChar == 'e') { checkChar = fileIn.get(); if(checkChar == 'm') { checkChar = fileIn.get(); if(checkChar == 't') { checkChar = fileIn.get(); if(checkChar == 'l') { checkChar = fileIn.get(); if(checkChar == ' ') { meshMaterialsTemp = L""; //Make sure this is cleared fileIn >> meshMaterialsTemp; //Get next type (string) meshMaterials.push_back(meshMaterialsTemp); } } } } } } break; default: break; } } } else //If we could not open the file { SwapChain->SetFullscreenState(false, NULL); //Make sure we are out of fullscreen //create message std::wstring message = L"Could not open: "; message += filename; MessageBox(0, message.c_str(), //display message L"Error", MB_OK); return false; } subsetIndexStart.push_back(vIndex); //There won't be another index start after our last subset, so set it here //sometimes "g" is defined at the very top of the file, then again before the first group of faces. //This makes sure the first subset does not conatain "0" indices. if(subsetIndexStart[1] == 0) { subsetIndexStart.erase(subsetIndexStart.begin()+1); meshSubsets--; } //Make sure we have a default for the tex coord and normal //if one or both are not specified if(!hasNorm) vertNorm.push_back(XMFLOAT3(0.0f, 0.0f, 0.0f)); if(!hasTexCoord) vertTexCoord.push_back(XMFLOAT2(0.0f, 0.0f)); //Close the obj file, and open the mtl file fileIn.close(); fileIn.open(meshMatLib.c_str()); std::wstring lastStringRead; int matCount = material.size(); //total materials //kdset - If our diffuse color was not set, we can use the ambient color (which is usually the same) //If the diffuse color WAS set, then we don't need to set our diffuse color to ambient bool kdset = false; if (fileIn) { while(fileIn) { checkChar = fileIn.get(); //Get next char switch (checkChar) { //Check for comment case '#': checkChar = fileIn.get(); while(checkChar != '\n') checkChar = fileIn.get(); break; //Set diffuse color case 'K': checkChar = fileIn.get(); if(checkChar == 'd') //Diffuse Color { checkChar = fileIn.get(); //remove space fileIn >> material[matCount-1].difColor.x; fileIn >> material[matCount-1].difColor.y; fileIn >> material[matCount-1].difColor.z; kdset = true; } //Ambient Color (We'll store it in diffuse if there isn't a diffuse already) if(checkChar == 'a') { checkChar = fileIn.get(); //remove space if(!kdset) { fileIn >> material[matCount-1].difColor.x; fileIn >> material[matCount-1].difColor.y; fileIn >> material[matCount-1].difColor.z; } } break; //Check for transparency case 'T': checkChar = fileIn.get(); if(checkChar == 'r') { checkChar = fileIn.get(); //remove space float Transparency; fileIn >> Transparency; material[matCount-1].difColor.w = Transparency; if(Transparency > 0.0f) material[matCount-1].transparent = true; } break; //Some obj files specify d for transparency case 'd': checkChar = fileIn.get(); if(checkChar == ' ') { float Transparency; fileIn >> Transparency; //'d' - 0 being most transparent, and 1 being opaque, opposite of Tr Transparency = 1.0f - Transparency; material[matCount-1].difColor.w = Transparency; if(Transparency > 0.0f) material[matCount-1].transparent = true; } break; //Get the diffuse map (texture) case 'm': checkChar = fileIn.get(); if(checkChar == 'a') { checkChar = fileIn.get(); if(checkChar == 'p') { checkChar = fileIn.get(); if(checkChar == '_') { //map_Kd - Diffuse map checkChar = fileIn.get(); if(checkChar == 'K') { checkChar = fileIn.get(); if(checkChar == 'd') { std::wstring fileNamePath; fileIn.get(); //Remove whitespace between map_Kd and file //Get the file path - We read the pathname char by char since //pathnames can sometimes contain spaces, so we will read until //we find the file extension bool texFilePathEnd = false; while(!texFilePathEnd) { checkChar = fileIn.get(); fileNamePath += checkChar; if(checkChar == '.') { for(int i = 0; i < 3; ++i) fileNamePath += fileIn.get(); texFilePathEnd = true; } } //check if this texture has already been loaded bool alreadyLoaded = false; for(int i = 0; i < textureNameArray.size(); ++i) { if(fileNamePath == textureNameArray[i]) { alreadyLoaded = true; material[matCount-1].texArrayIndex = i; material[matCount-1].hasTexture = true; } } //if the texture is not already loaded, load it now if(!alreadyLoaded) { ID3D11ShaderResourceView* tempMeshSRV; hr = D3DX11CreateShaderResourceViewFromFile( d3d11Device, fileNamePath.c_str(), NULL, NULL, &tempMeshSRV, NULL ); if(SUCCEEDED(hr)) { textureNameArray.push_back(fileNamePath.c_str()); material[matCount-1].texArrayIndex = meshSRV.size(); meshSRV.push_back(tempMeshSRV); material[matCount-1].hasTexture = true; } } } } //map_d - alpha map else if(checkChar == 'd') { //Alpha maps are usually the same as the diffuse map //So we will assume that for now by only enabling //transparency for this material, as we will already //be using the alpha channel in the diffuse map material[matCount-1].transparent = true; } //map_bump - bump map (we're usinga normal map though) else if(checkChar == 'b') { checkChar = fileIn.get(); if(checkChar == 'u') { checkChar = fileIn.get(); if(checkChar == 'm') { checkChar = fileIn.get(); if(checkChar == 'p') { std::wstring fileNamePath; fileIn.get(); //Remove whitespace between map_bump and file //Get the file path - We read the pathname char by char since //pathnames can sometimes contain spaces, so we will read until //we find the file extension bool texFilePathEnd = false; while(!texFilePathEnd) { checkChar = fileIn.get(); fileNamePath += checkChar; if(checkChar == '.') { for(int i = 0; i < 3; ++i) fileNamePath += fileIn.get(); texFilePathEnd = true; } } //check if this texture has already been loaded bool alreadyLoaded = false; for(int i = 0; i < textureNameArray.size(); ++i) { if(fileNamePath == textureNameArray[i]) { alreadyLoaded = true; material[matCount-1].normMapTexArrayIndex = i; material[matCount-1].hasNormMap = true; } } //if the texture is not already loaded, load it now if(!alreadyLoaded) { ID3D11ShaderResourceView* tempMeshSRV; hr = D3DX11CreateShaderResourceViewFromFile( d3d11Device, fileNamePath.c_str(), NULL, NULL, &tempMeshSRV, NULL ); if(SUCCEEDED(hr)) { textureNameArray.push_back(fileNamePath.c_str()); material[matCount-1].normMapTexArrayIndex = meshSRV.size(); meshSRV.push_back(tempMeshSRV); material[matCount-1].hasNormMap = true; } } } } } } } } } break; case 'n': //newmtl - Declare new material checkChar = fileIn.get(); if(checkChar == 'e') { checkChar = fileIn.get(); if(checkChar == 'w') { checkChar = fileIn.get(); if(checkChar == 'm') { checkChar = fileIn.get(); if(checkChar == 't') { checkChar = fileIn.get(); if(checkChar == 'l') { checkChar = fileIn.get(); if(checkChar == ' ') { //New material, set its defaults SurfaceMaterial tempMat; material.push_back(tempMat); fileIn >> material[matCount].matName; material[matCount].transparent = false; material[matCount].hasTexture = false; material[matCount].hasNormMap = false; material[matCount].normMapTexArrayIndex = 0; material[matCount].texArrayIndex = 0; matCount++; kdset = false; } } } } } } break; default: break; } } } else { SwapChain->SetFullscreenState(false, NULL); //Make sure we are out of fullscreen std::wstring message = L"Could not open: "; message += meshMatLib; MessageBox(0, message.c_str(), L"Error", MB_OK); return false; } //Set the subsets material to the index value //of the its material in our material array for(int i = 0; i < meshSubsets; ++i) { bool hasMat = false; for(int j = 0; j < material.size(); ++j) { if(meshMaterials[i] == material[j].matName) { subsetMaterialArray.push_back(j); hasMat = true; } } if(!hasMat) subsetMaterialArray.push_back(0); //Use first material in array } std::vector<Vertex> vertices; Vertex tempVert; //Create our vertices using the information we got //from the file and store them in a vector for(int j = 0 ; j < totalVerts; ++j) { tempVert.pos = vertPos[vertPosIndex[j]]; tempVert.normal = vertNorm[vertNormIndex[j]]; tempVert.texCoord = vertTexCoord[vertTCIndex[j]]; vertices.push_back(tempVert); } //////////////////////Compute Normals/////////////////////////// //If computeNormals was set to true then we will create our own //normals, if it was set to false we will use the obj files normals if(computeNormals) { std::vector<XMFLOAT3> tempNormal; //normalized and unnormalized normals XMFLOAT3 unnormalized = XMFLOAT3(0.0f, 0.0f, 0.0f); //tangent stuff std::vector<XMFLOAT3> tempTangent; XMFLOAT3 tangent = XMFLOAT3(0.0f, 0.0f, 0.0f); float tcU1, tcV1, tcU2, tcV2; //Used to get vectors (sides) from the position of the verts float vecX, vecY, vecZ; //Two edges of our triangle XMVECTOR edge1 = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); XMVECTOR edge2 = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); //Compute face normals //And Tangents for(int i = 0; i < meshTriangles; ++i) { //Get the vector describing one edge of our triangle (edge 0,2) vecX = vertices[indices[(i*3)]].pos.x - vertices[indices[(i*3)+2]].pos.x; vecY = vertices[indices[(i*3)]].pos.y - vertices[indices[(i*3)+2]].pos.y; vecZ = vertices[indices[(i*3)]].pos.z - vertices[indices[(i*3)+2]].pos.z; edge1 = XMVectorSet(vecX, vecY, vecZ, 0.0f); //Create our first edge //Get the vector describing another edge of our triangle (edge 2,1) vecX = vertices[indices[(i*3)+2]].pos.x - vertices[indices[(i*3)+1]].pos.x; vecY = vertices[indices[(i*3)+2]].pos.y - vertices[indices[(i*3)+1]].pos.y; vecZ = vertices[indices[(i*3)+2]].pos.z - vertices[indices[(i*3)+1]].pos.z; edge2 = XMVectorSet(vecX, vecY, vecZ, 0.0f); //Create our second edge //Cross multiply the two edge vectors to get the un-normalized face normal XMStoreFloat3(&unnormalized, XMVector3Cross(edge1, edge2)); tempNormal.push_back(unnormalized); //Find first texture coordinate edge 2d vector tcU1 = vertices[indices[(i*3)]].texCoord.x - vertices[indices[(i*3)+2]].texCoord.x; tcV1 = vertices[indices[(i*3)]].texCoord.y - vertices[indices[(i*3)+2]].texCoord.y; //Find second texture coordinate edge 2d vector tcU2 = vertices[indices[(i*3)+2]].texCoord.x - vertices[indices[(i*3)+1]].texCoord.x; tcV2 = vertices[indices[(i*3)+2]].texCoord.y - vertices[indices[(i*3)+1]].texCoord.y; //Find tangent using both tex coord edges and position edges tangent.x = (tcV1 * XMVectorGetX(edge1) - tcV2 * XMVectorGetX(edge2)) * (1.0f / (tcU1 * tcV2 - tcU2 * tcV1)); tangent.y = (tcV1 * XMVectorGetY(edge1) - tcV2 * XMVectorGetY(edge2)) * (1.0f / (tcU1 * tcV2 - tcU2 * tcV1)); tangent.z = (tcV1 * XMVectorGetZ(edge1) - tcV2 * XMVectorGetZ(edge2)) * (1.0f / (tcU1 * tcV2 - tcU2 * tcV1)); tempTangent.push_back(tangent); } //Compute vertex normals (normal Averaging) XMVECTOR normalSum = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); XMVECTOR tangentSum = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); int facesUsing = 0; float tX, tY, tZ; //temp axis variables //Go through each vertex for(int i = 0; i < totalVerts; ++i) { //Check which triangles use this vertex for(int j = 0; j < meshTriangles; ++j) { if(indices[j*3] == i || indices[(j*3)+1] == i || indices[(j*3)+2] == i) { tX = XMVectorGetX(normalSum) + tempNormal[j].x; tY = XMVectorGetY(normalSum) + tempNormal[j].y; tZ = XMVectorGetZ(normalSum) + tempNormal[j].z; normalSum = XMVectorSet(tX, tY, tZ, 0.0f); //If a face is using the vertex, add the unormalized face normal to the normalSum //We can reuse tX, tY, tZ to sum up tangents tX = XMVectorGetX(tangentSum) + tempTangent[j].x; tY = XMVectorGetY(tangentSum) + tempTangent[j].y; tZ = XMVectorGetZ(tangentSum) + tempTangent[j].z; tangentSum = XMVectorSet(tX, tY, tZ, 0.0f); //sum up face tangents using this vertex facesUsing++; } } //Get the actual normal by dividing the normalSum by the number of faces sharing the vertex normalSum = normalSum / facesUsing; tangentSum = tangentSum / facesUsing; //Normalize the normalSum vector and tangent normalSum = XMVector3Normalize(normalSum); tangentSum = XMVector3Normalize(tangentSum); //Store the normal and tangent in our current vertex vertices[i].normal.x = XMVectorGetX(normalSum); vertices[i].normal.y = XMVectorGetY(normalSum); vertices[i].normal.z = XMVectorGetZ(normalSum); vertices[i].tangent.x = XMVectorGetX(tangentSum); vertices[i].tangent.y = XMVectorGetY(tangentSum); vertices[i].tangent.z = XMVectorGetZ(tangentSum); //Clear normalSum, tangentSum and facesUsing for next vertex normalSum = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); tangentSum = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); facesUsing = 0; } } //Create index buffer D3D11_BUFFER_DESC indexBufferDesc; ZeroMemory( &indexBufferDesc, sizeof(indexBufferDesc) ); indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(DWORD) * meshTriangles*3; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = &indices[0]; d3d11Device->CreateBuffer(&indexBufferDesc, &iinitData, indexBuff); //Create Vertex Buffer D3D11_BUFFER_DESC vertexBufferDesc; ZeroMemory( &vertexBufferDesc, sizeof(vertexBufferDesc) ); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.ByteWidth = sizeof( Vertex ) * totalVerts; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; ZeroMemory( &vertexBufferData, sizeof(vertexBufferData) ); vertexBufferData.pSysMem = &vertices[0]; hr = d3d11Device->CreateBuffer( &vertexBufferDesc, &vertexBufferData, vertBuff); /************************************New Stuff****************************************************/ // Compute AABB and true center AABB = CreateAABB(vertPos); /*************************************************************************************************/ return true; } void CreateSphere(int LatLines, int LongLines) { NumSphereVertices = ((LatLines-2) * LongLines) + 2; NumSphereFaces = ((LatLines-3)*(LongLines)*2) + (LongLines*2); float sphereYaw = 0.0f; float spherePitch = 0.0f; std::vector<Vertex> vertices(NumSphereVertices); XMVECTOR currVertPos = XMVectorSet(0.0f, 0.0f, 1.0f, 0.0f); vertices[0].pos.x = 0.0f; vertices[0].pos.y = 0.0f; vertices[0].pos.z = 1.0f; for(DWORD i = 0; i < LatLines-2; ++i) { spherePitch = (i+1) * (3.14f/(LatLines-1)); Rotationx = XMMatrixRotationX(spherePitch); for(DWORD j = 0; j < LongLines; ++j) { sphereYaw = j * (6.28f/(LongLines)); Rotationy = XMMatrixRotationZ(sphereYaw); currVertPos = XMVector3TransformNormal( XMVectorSet(0.0f, 0.0f, 1.0f, 0.0f), (Rotationx * Rotationy) ); currVertPos = XMVector3Normalize( currVertPos ); vertices[i*LongLines+j+1].pos.x = XMVectorGetX(currVertPos); vertices[i*LongLines+j+1].pos.y = XMVectorGetY(currVertPos); vertices[i*LongLines+j+1].pos.z = XMVectorGetZ(currVertPos); } } vertices[NumSphereVertices-1].pos.x = 0.0f; vertices[NumSphereVertices-1].pos.y = 0.0f; vertices[NumSphereVertices-1].pos.z = -1.0f; D3D11_BUFFER_DESC vertexBufferDesc; ZeroMemory( &vertexBufferDesc, sizeof(vertexBufferDesc) ); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.ByteWidth = sizeof( Vertex ) * NumSphereVertices; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; ZeroMemory( &vertexBufferData, sizeof(vertexBufferData) ); vertexBufferData.pSysMem = &vertices[0]; hr = d3d11Device->CreateBuffer( &vertexBufferDesc, &vertexBufferData, &sphereVertBuffer); std::vector<DWORD> indices(NumSphereFaces * 3); int k = 0; for(DWORD l = 0; l < LongLines-1; ++l) { indices[k] = 0; indices[k+1] = l+1; indices[k+2] = l+2; k += 3; } indices[k] = 0; indices[k+1] = LongLines; indices[k+2] = 1; k += 3; for(DWORD i = 0; i < LatLines-3; ++i) { for(DWORD j = 0; j < LongLines-1; ++j) { indices[k] = i*LongLines+j+1; indices[k+1] = i*LongLines+j+2; indices[k+2] = (i+1)*LongLines+j+1; indices[k+3] = (i+1)*LongLines+j+1; indices[k+4] = i*LongLines+j+2; indices[k+5] = (i+1)*LongLines+j+2; k += 6; // next quad } indices[k] = (i*LongLines)+LongLines; indices[k+1] = (i*LongLines)+1; indices[k+2] = ((i+1)*LongLines)+LongLines; indices[k+3] = ((i+1)*LongLines)+LongLines; indices[k+4] = (i*LongLines)+1; indices[k+5] = ((i+1)*LongLines)+1; k += 6; } for(DWORD l = 0; l < LongLines-1; ++l) { indices[k] = NumSphereVertices-1; indices[k+1] = (NumSphereVertices-1)-(l+1); indices[k+2] = (NumSphereVertices-1)-(l+2); k += 3; } indices[k] = NumSphereVertices-1; indices[k+1] = (NumSphereVertices-1)-LongLines; indices[k+2] = NumSphereVertices-2; D3D11_BUFFER_DESC indexBufferDesc; ZeroMemory( &indexBufferDesc, sizeof(indexBufferDesc) ); indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(DWORD) * NumSphereFaces * 3; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = &indices[0]; d3d11Device->CreateBuffer(&indexBufferDesc, &iinitData, &sphereIndexBuffer); } void InitD2DScreenTexture() { //Create the vertex buffer Vertex v[] = { // Front Face Vertex(-1.0f, -1.0f, -1.0f, 0.0f, 1.0f,-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex(-1.0f, 1.0f, -1.0f, 0.0f, 0.0f,-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex( 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f), Vertex( 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f), }; DWORD indices[] = { // Front Face 0, 1, 2, 0, 2, 3, }; D3D11_BUFFER_DESC indexBufferDesc; ZeroMemory( &indexBufferDesc, sizeof(indexBufferDesc) ); indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(DWORD) * 2 * 3; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = indices; d3d11Device->CreateBuffer(&indexBufferDesc, &iinitData, &d2dIndexBuffer); D3D11_BUFFER_DESC vertexBufferDesc; ZeroMemory( &vertexBufferDesc, sizeof(vertexBufferDesc) ); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.ByteWidth = sizeof( Vertex ) * 4; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; ZeroMemory( &vertexBufferData, sizeof(vertexBufferData) ); vertexBufferData.pSysMem = v; hr = d3d11Device->CreateBuffer( &vertexBufferDesc, &vertexBufferData, &d2dVertBuffer); //Create A shader resource view from the texture D2D will render to, //So we can use it to texture a square which overlays our scene d3d11Device->CreateShaderResourceView(sharedTex11, NULL, &d2dTexture); } void StartTimer() { LARGE_INTEGER frequencyCount; QueryPerformanceFrequency(&frequencyCount); countsPerSecond = double(frequencyCount.QuadPart); QueryPerformanceCounter(&frequencyCount); CounterStart = frequencyCount.QuadPart; } double GetTime() { LARGE_INTEGER currentTime; QueryPerformanceCounter(&currentTime); return double(currentTime.QuadPart-CounterStart)/countsPerSecond; } double GetFrameTime() { LARGE_INTEGER currentTime; __int64 tickCount; QueryPerformanceCounter(&currentTime); tickCount = currentTime.QuadPart-frameTimeOld; frameTimeOld = currentTime.QuadPart; if(tickCount < 0.0f) tickCount = 0.0f; return float(tickCount)/countsPerSecond; } void UpdateScene(double time) { //Reset sphereWorld sphereWorld = XMMatrixIdentity(); //Define sphereWorld's world space matrix Scale = XMMatrixScaling( 5.0f, 5.0f, 5.0f ); //Make sure the sphere is always centered around camera Translation = XMMatrixTranslation( XMVectorGetX(camPosition), XMVectorGetY(camPosition), XMVectorGetZ(camPosition) ); //Set sphereWorld's world space using the transformations sphereWorld = Scale * Translation; //the loaded models world space meshWorld = XMMatrixIdentity(); Rotation = XMMatrixRotationY(3.14f); Scale = XMMatrixScaling( 10.0f, 1.0f, 10.0f ); Translation = XMMatrixTranslation( 0.0f, 0.0f, 0.0f ); meshWorld = Rotation * Scale * Translation; } int messageloop(){ MSG msg; ZeroMemory(&msg, sizeof(MSG)); while(true) { BOOL PeekMessageL( LPMSG lpMsg, HWND hWnd, UINT wMsgFilterMin, UINT wMsgFilterMax, UINT wRemoveMsg ); if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { if (msg.message == WM_QUIT) break; TranslateMessage(&msg); DispatchMessage(&msg); } else{ // run game code frameCount++; if(GetTime() > 1.0f) { fps = frameCount; frameCount = 0; StartTimer(); } frameTime = GetFrameTime(); DetectInput(frameTime); UpdateScene(frameTime); DrawScene(); } } return msg.wParam; } LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) { switch( msg ) { case WM_KEYDOWN: if( wParam == VK_ESCAPE ){ DestroyWindow(hwnd); } return 0; case WM_DESTROY: PostQuitMessage(0); return 0; } return DefWindowProc(hwnd, msg, wParam, lParam); } bool InitializeWindow(HINSTANCE hInstance, int ShowWnd, int width, int height, bool windowed) { typedef struct _WNDCLASS { UINT cbSize; UINT style; WNDPROC lpfnWndProc; int cbClsExtra; int cbWndExtra; HANDLE hInstance; HICON hIcon; HCURSOR hCursor; HBRUSH hbrBackground; LPCTSTR lpszMenuName; LPCTSTR lpszClassName; } WNDCLASS; WNDCLASSEX wc; wc.cbSize = sizeof(WNDCLASSEX); wc.style = CS_HREDRAW | CS_VREDRAW; wc.lpfnWndProc = WndProc; wc.cbClsExtra = NULL; wc.cbWndExtra = NULL; wc.hInstance = hInstance; wc.hIcon = LoadIcon(NULL, IDI_APPLICATION); wc.hCursor = LoadCursor(NULL, IDC_ARROW); wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1); wc.lpszMenuName = NULL; wc.lpszClassName = WndClassName; wc.hIconSm = LoadIcon(NULL, IDI_APPLICATION); if (!RegisterClassEx(&wc)) { MessageBox(NULL, L"Error registering class", L"Error", MB_OK | MB_ICONERROR); return 1; } hwnd = CreateWindowEx( NULL, WndClassName, L"Lesson 33 - Frustum Culling", WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT, width, height, NULL, NULL, hInstance, NULL ); if (!hwnd) { MessageBox(NULL, L"Error creating window", L"Error", MB_OK | MB_ICONERROR); return 1; } ShowWindow(hwnd, ShowWnd); UpdateWindow(hwnd); return true; } bool InitializeDirect3d11App(HINSTANCE hInstance) { //Describe our SwapChain Buffer DXGI_MODE_DESC bufferDesc; ZeroMemory(&bufferDesc, sizeof(DXGI_MODE_DESC)); bufferDesc.Width = Width; bufferDesc.Height = Height; bufferDesc.RefreshRate.Numerator = 60; bufferDesc.RefreshRate.Denominator = 1; bufferDesc.Format = DXGI_FORMAT_B8G8R8A8_UNORM; bufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED; bufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED; //Describe our SwapChain DXGI_SWAP_CHAIN_DESC swapChainDesc; ZeroMemory(&swapChainDesc, sizeof(DXGI_SWAP_CHAIN_DESC)); swapChainDesc.BufferDesc = bufferDesc; swapChainDesc.SampleDesc.Count = 1; swapChainDesc.SampleDesc.Quality = 0; swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; swapChainDesc.BufferCount = 1; swapChainDesc.OutputWindow = hwnd; ///////////////**************Fullscreen/Windowed**************//////////////////// swapChainDesc.Windowed = true; ///////////////**************Fullscreen/Windowed**************//////////////////// swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_DISCARD; // Create DXGI factory to enumerate adapters/////////////////////////////////////////////////////////////////////////// IDXGIFactory1 *DXGIFactory; HRESULT hr = CreateDXGIFactory1(__uuidof(IDXGIFactory1), (void**)&DXGIFactory); // Use the first adapter IDXGIAdapter1 *Adapter; hr = DXGIFactory->EnumAdapters1(0, &Adapter); DXGIFactory->Release(); //Create our Direct3D 11 Device and SwapChain////////////////////////////////////////////////////////////////////////// hr = D3D11CreateDeviceAndSwapChain(Adapter, D3D_DRIVER_TYPE_UNKNOWN, NULL, D3D11_CREATE_DEVICE_BGRA_SUPPORT, NULL, NULL, D3D11_SDK_VERSION, &swapChainDesc, &SwapChain, &d3d11Device, NULL, &d3d11DevCon); //Initialize Direct2D, Direct3D 10.1, DirectWrite InitD2D_D3D101_DWrite(Adapter); //Release the Adapter interface Adapter->Release(); //Create our BackBuffer and Render Target hr = SwapChain->GetBuffer( 0, __uuidof( ID3D11Texture2D ), (void**)&BackBuffer11 ); hr = d3d11Device->CreateRenderTargetView( BackBuffer11, NULL, &renderTargetView ); //Describe our Depth/Stencil Buffer D3D11_TEXTURE2D_DESC depthStencilDesc; depthStencilDesc.Width = Width; depthStencilDesc.Height = Height; depthStencilDesc.MipLevels = 1; depthStencilDesc.ArraySize = 1; depthStencilDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; depthStencilDesc.SampleDesc.Count = 1; depthStencilDesc.SampleDesc.Quality = 0; depthStencilDesc.Usage = D3D11_USAGE_DEFAULT; depthStencilDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL; depthStencilDesc.CPUAccessFlags = 0; depthStencilDesc.MiscFlags = 0; //Create the Depth/Stencil View d3d11Device->CreateTexture2D(&depthStencilDesc, NULL, &depthStencilBuffer); d3d11Device->CreateDepthStencilView(depthStencilBuffer, NULL, &depthStencilView); return true; } bool InitD2D_D3D101_DWrite(IDXGIAdapter1 *Adapter) { //Create our Direc3D 10.1 Device/////////////////////////////////////////////////////////////////////////////////////// hr = D3D10CreateDevice1(Adapter, D3D10_DRIVER_TYPE_HARDWARE, NULL,D3D10_CREATE_DEVICE_BGRA_SUPPORT, D3D10_FEATURE_LEVEL_9_3, D3D10_1_SDK_VERSION, &d3d101Device ); //Create Shared Texture that Direct3D 10.1 will render on////////////////////////////////////////////////////////////// D3D11_TEXTURE2D_DESC sharedTexDesc; ZeroMemory(&sharedTexDesc, sizeof(sharedTexDesc)); sharedTexDesc.Width = Width; sharedTexDesc.Height = Height; sharedTexDesc.Format = DXGI_FORMAT_B8G8R8A8_UNORM; sharedTexDesc.MipLevels = 1; sharedTexDesc.ArraySize = 1; sharedTexDesc.SampleDesc.Count = 1; sharedTexDesc.Usage = D3D11_USAGE_DEFAULT; sharedTexDesc.BindFlags = D3D11_BIND_SHADER_RESOURCE | D3D11_BIND_RENDER_TARGET; sharedTexDesc.MiscFlags = D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX; hr = d3d11Device->CreateTexture2D(&sharedTexDesc, NULL, &sharedTex11); // Get the keyed mutex for the shared texture (for D3D11)/////////////////////////////////////////////////////////////// hr = sharedTex11->QueryInterface(__uuidof(IDXGIKeyedMutex), (void**)&keyedMutex11); // Get the shared handle needed to open the shared texture in D3D10.1/////////////////////////////////////////////////// IDXGIResource *sharedResource10; HANDLE sharedHandle10; hr = sharedTex11->QueryInterface(__uuidof(IDXGIResource), (void**)&sharedResource10); hr = sharedResource10->GetSharedHandle(&sharedHandle10); sharedResource10->Release(); // Open the surface for the shared texture in D3D10.1/////////////////////////////////////////////////////////////////// IDXGISurface1 *sharedSurface10; hr = d3d101Device->OpenSharedResource(sharedHandle10, __uuidof(IDXGISurface1), (void**)(&sharedSurface10)); hr = sharedSurface10->QueryInterface(__uuidof(IDXGIKeyedMutex), (void**)&keyedMutex10); // Create D2D factory/////////////////////////////////////////////////////////////////////////////////////////////////// ID2D1Factory *D2DFactory; hr = D2D1CreateFactory(D2D1_FACTORY_TYPE_SINGLE_THREADED, __uuidof(ID2D1Factory), (void**)&D2DFactory); D2D1_RENDER_TARGET_PROPERTIES renderTargetProperties; ZeroMemory(&renderTargetProperties, sizeof(renderTargetProperties)); renderTargetProperties.type = D2D1_RENDER_TARGET_TYPE_HARDWARE; renderTargetProperties.pixelFormat = D2D1::PixelFormat(DXGI_FORMAT_UNKNOWN, D2D1_ALPHA_MODE_PREMULTIPLIED); hr = D2DFactory->CreateDxgiSurfaceRenderTarget(sharedSurface10, &renderTargetProperties, &D2DRenderTarget); sharedSurface10->Release(); D2DFactory->Release(); // Create a solid color brush to draw something with hr = D2DRenderTarget->CreateSolidColorBrush(D2D1::ColorF(1.0f, 1.0f, 1.0f, 1.0f), &Brush); //DirectWrite/////////////////////////////////////////////////////////////////////////////////////////////////////////// hr = DWriteCreateFactory(DWRITE_FACTORY_TYPE_SHARED, __uuidof(IDWriteFactory), reinterpret_cast<IUnknown**>(&DWriteFactory)); hr = DWriteFactory->CreateTextFormat( L"Script", NULL, DWRITE_FONT_WEIGHT_REGULAR, DWRITE_FONT_STYLE_NORMAL, DWRITE_FONT_STRETCH_NORMAL, 24.0f, L"en-us", &TextFormat ); hr = TextFormat->SetTextAlignment(DWRITE_TEXT_ALIGNMENT_LEADING); hr = TextFormat->SetParagraphAlignment(DWRITE_PARAGRAPH_ALIGNMENT_NEAR); d3d101Device->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_POINTLIST); return true; } bool InitDirectInput(HINSTANCE hInstance) { hr = DirectInput8Create(hInstance, DIRECTINPUT_VERSION, IID_IDirectInput8, (void**)&DirectInput, NULL); hr = DirectInput->CreateDevice(GUID_SysKeyboard, &DIKeyboard, NULL); hr = DirectInput->CreateDevice(GUID_SysMouse, &DIMouse, NULL); hr = DIKeyboard->SetDataFormat(&c_dfDIKeyboard); hr = DIKeyboard->SetCooperativeLevel(hwnd, DISCL_FOREGROUND | DISCL_NONEXCLUSIVE); hr = DIMouse->SetDataFormat(&c_dfDIMouse); hr = DIMouse->SetCooperativeLevel(hwnd, DISCL_EXCLUSIVE | DISCL_NOWINKEY | DISCL_FOREGROUND); return true; } int WINAPI WinMain(HINSTANCE hInstance, //Main windows function HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nShowCmd) { if(!InitializeWindow(hInstance, nShowCmd, Width, Height, true)) { MessageBox(0, L"Window Initialization - Failed", L"Error", MB_OK); return 0; } if(!InitializeDirect3d11App(hInstance)) //Initialize Direct3D { MessageBox(0, L"Direct3D Initialization - Failed", L"Error", MB_OK); return 0; } if(!InitScene()) //Initialize our scene { MessageBox(0, L"Scene Initialization - Failed", L"Error", MB_OK); return 0; } if(!InitDirectInput(hInstance)) { MessageBox(0, L"Direct Input Initialization - Failed", L"Error", MB_OK); return 0; } messageloop(); CleanUp(); return 0; } Effects.fx #define NUM_LEAVES_PER_TREE 1000 struct Light { float3 pos; float range; float3 dir; float cone; float3 att; float4 ambient; float4 diffuse; }; cbuffer cbPerFrame { Light light; }; cbuffer cbPerObject { float4x4 WVP; float4x4 World; float4 difColor; bool hasTexture; bool hasNormMap; bool isInstance; bool isLeaf; }; cbuffer cbPerScene { float4x4 leafOnTree[NUM_LEAVES_PER_TREE]; } Texture2D ObjTexture; Texture2D ObjNormMap; SamplerState ObjSamplerState; TextureCube SkyMap; struct VS_OUTPUT { float4 Pos : SV_POSITION; float4 worldPos : POSITION; float2 TexCoord : TEXCOORD; float3 normal : NORMAL; float3 tangent : TANGENT; }; struct SKYMAP_VS_OUTPUT //output structure for skymap vertex shader { float4 Pos : SV_POSITION; float3 texCoord : TEXCOORD; }; VS_OUTPUT VS(float4 inPos : POSITION, float2 inTexCoord : TEXCOORD, float3 normal : NORMAL, float3 tangent : TANGENT, float3 instancePos : INSTANCEPOS, uint instanceID : SV_InstanceID) { VS_OUTPUT output; if(isInstance) { // get leaves position on tree, then add trees position if(isLeaf) { // We have 1000 leaves per tree, so we can find the current leaf (in the tree) we are on (so we can get it's matrix from the matrix array stored in cbPerScene) // by first getting the current tree (instanceID / NUM_LEAVES_PER_TREE). We can then find the current leaf in the tree we are on by multiplying the current tree id // with the number of leaves per tree, then subtracting that total from the current instance id. uint currTree = (instanceID / NUM_LEAVES_PER_TREE); uint currLeafInTree = instanceID - (currTree * NUM_LEAVES_PER_TREE); inPos = mul(inPos, leafOnTree[currLeafInTree]); } // set position using instance data inPos += float4(instancePos, 0.0f); } output.Pos = mul(inPos, WVP); output.worldPos = mul(inPos, World); output.normal = mul(normal, World); output.tangent = mul(tangent, World); output.TexCoord = inTexCoord; return output; } SKYMAP_VS_OUTPUT SKYMAP_VS(float3 inPos : POSITION, float2 inTexCoord : TEXCOORD, float3 normal : NORMAL, float3 tangent : TANGENT) { SKYMAP_VS_OUTPUT output = (SKYMAP_VS_OUTPUT)0; //Set Pos to xyww instead of xyzw, so that z will always be 1 (furthest from camera) output.Pos = mul(float4(inPos, 1.0f), WVP).xyww; output.texCoord = inPos; return output; } float4 PS(VS_OUTPUT input) : SV_TARGET { input.normal = normalize(input.normal); //Set diffuse color of material float4 diffuse = difColor; //If material has a diffuse texture map, set it now if(hasTexture == true) diffuse = ObjTexture.Sample( ObjSamplerState, input.TexCoord ); clip(diffuse.a - 0.25); //If material has a normal map, we can set it now if(hasNormMap == true) { //Load normal from normal map float4 normalMap = ObjNormMap.Sample( ObjSamplerState, input.TexCoord ); //Change normal map range from [0, 1] to [-1, 1] normalMap = (2.0f*normalMap) - 1.0f; //Make sure tangent is completely orthogonal to normal input.tangent = normalize(input.tangent - dot(input.tangent, input.normal)*input.normal); //Create the biTangent float3 biTangent = cross(input.normal, input.tangent); //Create the "Texture Space" float3x3 texSpace = float3x3(input.tangent, biTangent, input.normal); //Convert normal from normal map to texture space and store in input.normal input.normal = normalize(mul(normalMap, texSpace)); } float3 finalColor; finalColor = diffuse * light.ambient; finalColor += saturate(dot(light.dir, input.normal) * light.diffuse * diffuse); return float4(finalColor, diffuse.a); } float4 SKYMAP_PS(SKYMAP_VS_OUTPUT input) : SV_Target { return SkyMap.Sample(ObjSamplerState, input.texCoord); } float4 D2D_PS(VS_OUTPUT input) : SV_TARGET { float4 diffuse = ObjTexture.Sample( ObjSamplerState, input.TexCoord ); return diffuse; }